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afac Ascending (rising) factorial.

Description

Calculate the ascending (or rising) factorial of a value x of order r.

Usage

afac(x, r, method = "product")

Arguments

x A value for which the ascending factorial is to be calculated.

r The power x is to be raised to.

method The method by which the descending factorials are to be calculated. Default is
"product" which uses direct arithmetic. Alternative is "gamma" which calcu-
lates the descending factorial using the Gamma function. The alternative method
might be faster but might fail because the Gamma function is not defined for
negative integers (returning Inf).
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Value

The ascending factorial of value x raised to the r’th power.

Examples

# To calculate the 4th ascending factorial for a value (e.g., 3.14):
afac(x = 3.14, r = 4)

# To calculate the 5th ascending factorial for values 3.14, 2.72, and 0.58:
afac(x = c(3.14, 2.72, 0.58), r = 5)

AMS Alpha Shape-Parameter Given Location-Parameters, Mean, and Vari-
ance a Four-Parameter Beta Probability Density Distribution.

Description

Calculates the Beta value required to produce a Beta probability density distribution with defined
moments and parameters. Be advised that not all combinations of moments and parameters can be
satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both location-
parameters, meaning that the value of the lower-location parameter will take on which ever value it
must, and cannot be specified).

Usage

AMS(mean, variance, l = 0, u = 1, sd = NULL)

Arguments

mean The mean (first raw moment) of the target Standard Beta probability density
distribution.

variance The variance (second central moment) of the target Standard Beta probability
density distribution.

l The lower-bound location parameter of the Beta distribution. Default is 0 (as it
is for the Standard Beta distribution).

u The upper-bound location parameter of the Beta distribution. Default is 1 (as it
is for the Standard Beta distribution).

sd Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.

Value

A numeric value representing the required value for the Alpha shape-parameter in order to produce
a Beta probability density distribution with the target mean and variance, given specified lower- and
upper bounds of the Beta distribution.
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Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0, rescaled to proportion
# of maximum.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3)) / 100
hist(testdata, xlim = c(0, 1))

# To find the alpha shape-parameter of a Standard (two-parameter) Beta
# distribution with the same mean and variance as the observed-score
# distribution using AMS():
AMS(mean(testdata), var(testdata))

AUC Area Under the ROC Curve.

Description

Given a vector of false-positive rates and a vector of true-positive rates, calculate the area under the
Receiver Operator Characteristic (ROC) curve.

Usage

AUC(FPR, TPR)

Arguments

FPR Vector of False-Positive Rates.

TPR Vector of True-Positive Rates.

Value

A value representing the area under the ROC curve.

Note

Script originally retrieved and modified from https://blog.revolutionanalytics.com/2016/11/calculating-
auc.html.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(0, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and
# that the reliability of this test was estimated to 0.7. To calculate the
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# necessary (x, y) coordinates to compute the area under the curve statistic
# one can use the LL.ROC() function with the argument
# raw.out = TRUE.
coords <- LL.ROC(x = testdata, reliability = .7, truecut = 50, min = 0,
max = 100, raw.out = TRUE)

# To calculate and retrieve the Area Under the Curve (AUC) with the AUC()
# function, feed it the raw coordinates calculated above.
AUC(coords[, "FPR"], coords[, "TPR"])

Beta.2p.fit Method of Moment Estimates of Shape-Parameters of the Two-
Parameter (Standard) Beta Distribution.

Description

An implementation of the method of moments estimation of two-parameter Beta distribution param-
eters. Given a vector of values, calculates the shape parameters required to produce a two-parameter
Beta distribution with the same mean and variance (i.e., the first two moments) as the observed-score
distribution.

Usage

Beta.2p.fit(scores = NULL, mean = NULL, variance = NULL, l = 0, u = 1)

Arguments

scores A vector of values to which the two-parameter Beta distribution is to be fitted.
The values ought to fall within the [0, 1] interval.

mean The mean of the target Beta distribution. Alternative to feeding the function raw
scores.

variance The variance of the target Beta distribution. Alternative to feeding the function
raw scores.

l Optional specification of a lower-bound parameter of the Beta distribution. De-
fault is 0 (i.e., the lower-bound of the Standard two-parameter Beta distribution).

u Optional specification of an upper-bound parameter of the Beta distribution. De-
fault is 1 (i.e., the lower-bound of the Standard two-parameter Beta distribution).

Value

A list of parameter-values required to produce a Standard two-parameter Beta distribution with the
same first two moments as the observed distribution.
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Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3)) / 100
hist(testdata, xlim = c(0, 1), freq = FALSE)

# To fit and retrieve the parameters for a two-parameter Beta distribution
# to the observed-score distribution using Beta.2p.fit():
(params.2p <- Beta.2p.fit(testdata))
curve(dbeta(x, params.2p$alpha, params.2p$beta), add = TRUE)

Beta.4p.fit Method of Moment Estimates of Shape- and Location Parameters of
the Four-Parameter Beta Distribution.

Description

An implementation of the method of moments estimation of four-parameter Beta distribution pa-
rameters presented by Hanson (1991). Given a vector of values, calculates the shape- and location
parameters required to produce a four-parameter Beta distribution with the same mean, variance,
skewness and kurtosis (i.e., the first four moments) as the observed-score distribution.

Usage

Beta.4p.fit(
scores,
mean = NULL,
variance = NULL,
skewness = NULL,
kurtosis = NULL

)

Arguments

scores A vector of values to which the four-parameter Beta distribution is to be fitted.

mean If scores are not supplied: specification of the mean for the target four-parameter
Beta distribution.

variance If scores are not supplied: specification of the variance for the target four-
parameter Beta distribution.

skewness If scores are not supplied: specification of the skewness for the target four-
parameter Beta distribution.

kurtosis If scores are not supplied: specification of the kurtosis for the target four-parameter
Beta distribution.



8 Beta.gfx.poly.cdf

Value

A list of parameter-values required to produce a four-parameter Beta distribution with the same first
four moments as the observed distribution.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(0, 100), freq = FALSE)

# To fit and retrieve the parameters for a four-parameter Beta distribution
# to the observed-score distribution using Beta.4p.fit():
(params.4p <- Beta.4p.fit(testdata))
curve(dBeta.4P(x, params.4p$l, params.4p$u, params.4p$alpha, params.4p$beta), add = TRUE)

Beta.gfx.poly.cdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Cumulative Probability Density Distribution.

Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Beta cumulative probability
functions.

Usage

Beta.gfx.poly.cdf(from, to, by, alpha, beta, l = 0, u = 1)

Arguments

from The point of the x-axis from where to start producing y-density values.

to The point of the x-axis to where y-density values are to be produced.

by The resolution (or spacing) at which to produce y-density values.

alpha The alpha shape-parameter value for the Standard Beta cumulative probability
distribution.

beta The beta shape-parameter for the Standard Beta cumulative probability distribu-
tion.
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l The lower-bound location parameter of the Beta distribution.

u The upper-bound location parameter of the Beta distribution.

Value

A two-column matrix with cumulative probability-values of y to plot against corresponding location
values of x.

Examples

# To box in an area under a four-parameter Beta cumulative distribution with
# location parameters l = 0.25 and u = 0.75, and shape parameters
# alpha = 5 and beta = 3, from 0.4 to 0.6:
plot(NULL, xlim = c(0, 1), ylim = c(0, 1))
coords <- Beta.gfx.poly.cdf(from = 0.4, to = 0.6, by = 0.001, alpha = 5,
beta = 3, l = 0.25, u = 0.75)
polygon(coords)

Beta.gfx.poly.pdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Probability Density Distribution.

Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Beta probability density
functions.

Usage

Beta.gfx.poly.pdf(from, to, by, alpha, beta, l = 0, u = 1)

Arguments

from The point of the x-axis from where to start producing y-density values.

to The point of the x-axis to where y-density values are to be produced.

by The resolution (or spacing) at which to produce y-density values.

alpha The alpha (first) shape-parameter value for the Standard Beta probability density
distribution.

beta The beta (second) shape-parameter for the Standard Beta probability density
distribution.

l The lower-bound location parameter of the Beta distribution.

u The upper-bound location parameter of the Beta distribution.

Value

A two-column matrix with density-values of y to plot against corresponding location values of x.
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Examples

# To box in an area under a four-parameter Beta distribution with location
# parameters l = .25 and u = .75, and shape parameters alpha = 5 and
# rbeta = 3, from 0.4 to 0.6:
plot(NULL, xlim = c(0, 1), ylim = c(0, 7))
coords <- Beta.gfx.poly.pdf(from = 0.4, to = 0.6, by = 0.001, alpha = 5,
beta = 3, l = 0.25, u = 0.75)
polygon(coords)

Beta.gfx.poly.qdf Coordinate Generation for Marking an Area Under the Curve for the
Beta Quantile Density Distribution.

Description

Plotting tool, producing a two-column matrix with values of y corresponding to locations on x.
Useful for shading areas under the curve when tracing the line for the Beta probability quantile
functions.

Usage

Beta.gfx.poly.qdf(from, to, by, alpha, beta, l = 0, u = 1)

Arguments

from The point of the x-axis from where to start producing y-quantile values.

to The point of the x-axis to where y-quantile values are to be produced.

by The resolution (or spacing) at which to produce y-density values.

alpha The alpha shape-parameter value for the Standard Beta probability distribution.

beta The beta shape-parameter for the Standard Beta probability distribution.

l The lower-bound location parameter of the Beta distribution.

u The upper-bound location parameter of the Beta distribution.

Value

A two-column matrix with quantile-values of y to plot against corresponding location values of x.

Examples

# To box in an area under a four-parameter Beta quantile distribution with
# location parameters l = .25 and u = 75, and shape parameters alpha = 5 and
# beta = 3, from .4 to .6:
plot(NULL, xlim = c(0, 1), ylim = c(0, 1))
coords <- Beta.gfx.poly.qdf(from = 0.4, to = 0.6, by = 0.001, alpha = 5,
beta = 3, l = 0.25, u = 0.75)
polygon(coords)
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Beta.tp.fit Estimate Beta true-score distribution based on observed-score raw-
moments and the effective test length.

Description

Estimator for the Beta true-score distribution shape-parameters from the observed-score distribu-
tion and Livingston and Lewis’ effective test length. Returns a list with entries representing the
lower- and upper shape parameters (l and u), and the shape parameters (alpha and beta) of the
four-parameters beta distribution, and the effective test length.

Usage

Beta.tp.fit(
x,
min,
max,
etl = NULL,
reliability = NULL,
true.model = "4P",
failsafe = FALSE,
l = 0,
u = 1,
output = "parameters"

)

Arguments

x Vector of observed-scores.

min The minimum possible score to attain on the test.

max The maximum possible score to attain on the test.

etl The value of Livingston and Lewis’ effective test length. See ?ETL(). Not
necessary to specify if reliability is supplied to the reliability argument.

reliability Optional specification of the test-score reliability coefficient. If specified, over-
rides the input of the etl argument.

true.model The type of Beta distribution which is to be fit to the moments of the true-
score distribution. Options are "4P" and "2P", where "4P" refers to the four-
parameter (with the same mean, variance, skewness, and kurtosis), and "2P" the
two-parameter solution where both location-parameters are specified (with the
same mean and variance).

failsafe Logical. Whether to revert to a fail-safe two-parameter solution should the four-
parameter solution contain invalid parameter estimates.

l If failsafe = TRUE or true.model = "2P": The lower-bound of the Beta distri-
bution. Default is 0 (i.e., the lower-bound of the Standard, two-parameter Beta
distribution).
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u If failsafe = TRUE or true.model = "2P": The upper-bound of the Beta distri-
bution. Default is 1 (i.e., the upper-bound of the Standard, two-parameter Beta
distribution).

output Option to specify true-score distribution moments as output if the value of the
output argument does not equal "parameters".

Value

A list with the parameter values of a four-parameter Beta distribution. "l" is the lower location-
parameter, "u" the upper location-parameter, "alpha" the first shape-parameter, "beta" the second
shape-parameter, and "etl" the effective test length.

References

Hanson, B. A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bi-
nomial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series. Retrieved from https://files.eric.ed.gov/fulltext/ED344945.pdf

Lord, F. M. (1965). A strong true-score theory, with applications. Psychometrika. 30(3). pp.
239–270. doi: 10.1007/BF02289490

Rogosa, D. & Finkelman, M. (2004). How Accurate Are the STAR Scores for Individual Students?
An Interpretive Guide. Retrieved from http://statweb.stanford.edu/~rag/accguide/guide04.pdf

Examples

# Generate some fictional data. Say 1000 individuals take a 100-item test
# where all items are equally difficult, and the true-score distribution
# is a four-parameter Beta distribution with location parameters l = 0.25,
# u = 0.75, alpha = 5, and beta = 3:
set.seed(12)
testdata <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))

# Since this test contains items which are all equally difficult, the true
# effective test length (etl) is the actual test length. I.e., etl = 100.
# To estimate the four-parameter Beta distribution parameters underlying
# the draws from the binomial distribution:
Beta.tp.fit(testdata, 0, 100, 100)

# Imagine a case where the fitting procedure produces an impermissible
# estimate (e.g., l < 0 or u > 1).
set.seed(1234)
testdata <- rbinom(1000, 50, rBeta.4P(1000, 0.25, 0.75, 5, 3))
Beta.tp.fit(testdata, 0, 50, 50)

# This example produced an l-value estimate less than 0. One way of
# dealing with such an occurrence is to revert to a two-parameter
# model, specifying the l and u parameters and estimating the
# alpha and beta parameters necessary to produce a Beta distribution
# with the same mean and variance as the estimated true-score distribution.

# Suppose you have good theoretical reasons to fix the l parameter at a
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# value of 0.25 (e.g., the test is composed of multiple-choice questions
# with four response-options, resulting in a 25% chance of guessing the
# correct answer). The l-parameter could be specified to this theoretically
# justified value, and the u-parameter could be specified to be equal to the
# estimate above (u = 0.7256552) as such:
Beta.tp.fit(testdata, 0, 50, 50, true.model = "2P", l = 0.25, u = 0.7256552)

betabinomialmoments Compute Moments of Beta-Binomial Probability Mass Functions.

Description

Computes Raw, Central, or Standardized moment properties of defined Beta-Binomial probability
mass functions.

Usage

betabinomialmoments(
N,
l,
u,
alpha,
beta,
types = c("raw", "central", "standardized"),
orders = 4

)

Arguments

N Number of trials.

l The first (lower) location-parameter of the Beta distribution.

u The second (upper) location-parameter of the Beta distribution.

alpha The alpha (first) shape-parameter of the Beta distribution.

beta The beta (second) shape-parameter of the Beta-distribution.

types A character vector determining which moment-types are to be calculated. Per-
missible values are "raw", "central", and "standardized".

orders The number of moment-orders to be calculated for each of the moment-types.

Value

A list of moment types, each a list of moment orders.

References

Hanson, B. A (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bino-
mial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series.
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Examples

# Assume 100 observations of a discrete variable with probabilities of
# positive outcomes adhering to a four-parameter Beta distribution with
# location parameters l = 0.25 and u = .95, and shape parameters a = 5 and
# b = 3. To compute the first four raw, central, and standardized moments of
# this distrubution using betabinomialmoments():
betabinomialmoments(N = 100, l = .25, u = .95, alpha = 5, beta = 3,
types = c("raw", "central", "standardized"), orders = 4)

betamedian Compute Median of Two- and Four-Parameter Beta Probability Den-
sity distribution.

Description

Computes the median of a Beta distribution with specified shape- and location parameters.

Usage

betamedian(alpha, beta, l = 0, u = 1)

Arguments

alpha The alpha shape parameter.

beta The beta shape parameter.

l The first (lower) location parameter. Default set to 0.

u The second (upper) location parameter. Default set to 1.

Examples

# To calculate the median of a two-parameter (standard) Beta distribution with
# shape parameters alpha = 5 and beta = 3:
betamedian(alpha = 5, beta = 3)

# To calculate the median of a four-parameter Beta distribution with shape
# parameters alpha = 5 and beta = 3, and location parameters l = 25 and
# u = 150:
betamedian(alpha = 5, beta = 3, l = 25, u = 150)
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betamode Compute Mode of Two- and Four-Parameter Beta Probability Density
distribution.

Description

Computes the mode of a Beta distribution with specified shape- and location parameters.

Usage

betamode(alpha, beta, l = 0, u = 1)

Arguments

alpha The alpha shape parameter of the Probability Density Distribution.

beta The beta shape parameter of the Probability Density Distribution.

l The first (lower) location parameter of a four-parameter distribution. Default set
to 0.

u The second (upper) location parameter of a four-parameter distribution. Default
set to 1.

Examples

# To calculate the mode of a two-parameter (standard) Beta distribution with
# shape parameters alpha = 5 and beta = 3:
betamode(alpha = 5, beta = 3)

# To calculate the mode of a four-parameter Beta distribution with shape
# parameters alpha = 5 and beta = 3, and location parameters l = 25 and
# u = 150:
betamode(alpha = 5, beta = 3, l = 25, u = 150)

betamoments Compute Moments of Two-to-Four Parameter Beta Probability Den-
sity Distributions.

Description

Computes Raw, Central, or Standardized moment properties of defined Beta probability density
distributions.
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Usage

betamoments(
alpha,
beta,
l = 0,
u = 1,
types = c("raw", "central", "standardized"),
orders = 4

)

Arguments

alpha The alpha shape parameter.

beta The beta shape parameter.

l The first (lower) location parameter.

u The second (upper) location parameter.

types A character vector determining which moment-types are to be calculated. Per-
missible values are "raw", "central", and "standardized".

orders The number of moment-orders to be calculated for each of the moment-types.

Value

A list of moment types, each a list of moment orders.

References

Hanson, B. A (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bino-
mial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series.

Examples

# Assume some variable follows a four-parameter Beta distribution with
# location parameters l = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the first four raw, central, and standardized
# moments of this distribution using betamoments():
betamoments(alpha = 5, beta = 3, l = 0.25, u = 0.75,
types = c("raw", "central", "standardized"), orders = 4)
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binomialmoments Compute Moments of Binomial Probability Mass Functions.

Description

Computes Raw, Central, or Standardized moment properties of defined Binomial probability mass
functions.

Usage

binomialmoments(n, p, types = c("raw", "central", "standardized"), orders = 4)

Arguments

n Number of Binomial trials

p Probability of success per trial.

types A character vector determining which moment-types are to be calculated. Per-
missible values are "raw", "central", and "standardized".

orders The number of moment-orders to be calculated for each of the moment-types.

Value

A list of moment types, each a list of moment orders.

Examples

# Assume some variable follows a Binomial distribution with number of trials
# equal to 100 and a probability of success on each trial of 0.75. To compute
# the first four raw, central, and standardized moments of this distribution
# using binomialmoments():
binomialmoments(n = 100, p = 0.75, types = c("raw", "central",
"standardized"), orders = 4)

# To only compute the (e.g.) standardized moments:
binomialmoments(n = 100, p = 0.75, types = "standardized")

# To compute moments beyond the fourth order (e.g., the sixth):
binomialmoments(n = 100, p = 0.75, orders = 6)
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BMS Beta Shape-Parameter Given Location-Parameters, Mean, and Vari-
ance of a Four-Parameter Beta Probability Density Distribution.

Description

Calculates the Beta value required to produce a Beta probability density distribution with defined
moments and parameters. Be advised that not all combinations of moments and parameters can be
satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both location-
parameters, meaning that the value of the lower-location parameter will take on which ever value it
must, and cannot be specified).

Usage

BMS(mean, variance, l = 0, u = 1, sd = NULL)

Arguments

mean The mean (first raw moment) of the target Standard Beta probability density
distribution.

variance The variance (second central moment) of the target Standard Beta probability
density distribution.

l The lower-bound location parameter of the Beta distribution. Default is 0 (as it
is for the Standard Beta distribution).

u The upper-bound location parameter of the Beta distribution. Default is 1 (as it
is for the Standard Beta distribution).

sd Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.

Value

A numeric value representing the required value for the Beta shape-parameter in order to produce
a Standard Beta probability density distribution with the target mean and variance, given specified
lower- and upper bounds of the Beta distribution.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0, rescaled to proportion
# of maximum.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3)) / 100
hist(testdata, xlim = c(0, 1))

# To find the beta shape-parameter of a Standard (two-parameter) Beta
# distribution with the same mean and variance as the observed-score
# distribution using BMS():
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BMS(mean(testdata), var(testdata))

# To find the beta shape-parameter of a four-parameter Beta
# distribution with specified lower- and upper-bounds of l = 0.25 and
# u = 0.75 using BMS:
BMS(mean(testdata), var(testdata), 0.25, 0.75)

caStats Classification Accuracy Statistics.

Description

Provides a set of statistics often used for conveying information regarding the certainty of classifi-
cations based on tests.

Usage

caStats(tp, tn, fp, fn)

Arguments

tp The frequency or rate of true-positive classifications.

tn The frequency or rate of true-negative classifications.

fp The frequency or rate of false-positive classifications.

fn The frequency or rate of false-negative classifications.

Value

A list of diagnostic performance statistics based on true/false positive/negative statistics. Specifi-
cally, the sensitivity, specificity, positive likelihood ratio (LR.pos), negative likelihood ratio (LR.neg),
positive predictive value (PPV), negative predictive value (NPV), Youden’s J. (Youden.J), and Ac-
curacy.

References

Glas et al. (2003). The Diagnostic Odds Ratio: A Single Indicator of Test Performance, Journal of
Clinical Epidemiology, 1129-1135, 56(11). doi: 10.1016/S0895-4356(03)00177-X

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(0, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and
# that the reliability of this test was estimated to 0.7. First, compute the
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# estimated confusion matrix using LL.CA():
cmat <- LL.CA(x = testdata, reliability = 0.7, cut = 50, min = 0,
max = 100)$confusionmatrix

# To estimate and retrieve diagnostic performance statistics using caStats(),
# feed it the appropriate entries of the confusion matrix.
caStats(tp = cmat["True", "Positive"], tn = cmat["True", "Negative"],
fp = cmat["False", "Positive"], fn = cmat["False", "Negative"])

cba Calculate Cronbach’s Alpha reliability-coefficient from supplied vari-
ables.

Description

Calculates Cronbach’s Alpha reliability coefficient of the sum-score.

Usage

cba(x)

Arguments

x A data-frame or matrix of numerical values where rows represent respondents,
and columns represent items.

Value

Cronbach’s Alpha for the sum-score of supplied variables.

Note

Missing values are treated by passing na.rm = TRUE to the var function call.

Be aware that this function does not issue a warning if there are negative correlations between
variables in the supplied data-set.

References

Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika 16,
297–334. doi: 10.1007/BF02310555

Examples

# Generate some fictional data. Say 100 students take a 50-item long test
# where all items are equally difficult.
set.seed(1234)
p.success <- rBeta.4P(100, 0.25, 0.75, 5, 3)
for (i in 1:50) {

if (i == 1) {
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rawdata <- matrix(nrow = 100, ncol = 50)
}
rawdata[, i] <- rbinom(100, 1, p.success)

}
# To calculate Cronbach's Alpha for this test:
cba(rawdata)

ccStats Classification Consistency Statistics.

Description

Provides a set of statistics often used for conveying information regarding the consistency of clas-
sifications based on tests.

Usage

ccStats(ii, ij, ji, jj)

Arguments

ii The frequency or rate of consistent classifications into category "i".

ij The frequency or rate of inconsistent classifications into categories "i" and "j".

ji The frequency or rate of inconsistent classifications into categories "j" and "i".

jj The frequency or rate of consistent classifications into category "j".

Value

A list of classification consistency statistics. Specifically, the coefficient of consistent classification
(p), the coefficient of consistent classification by chance (p_c), the proportion of positive classifica-
tions due to chance (p_c_pos), the proportion of negative classifications due to chance (p_c_neg),
and Cohen’s Kappa coefficient.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(1000, 100, rBeta.4P(1000, .25, .75, 5, 3))
hist(testdata, xlim = c(0, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and
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# that the reliability of this test was estimated to 0.7. First, compute the
# estimated consistency matrix using LL.CA():
cmat <- LL.CA(x = testdata, reliability = .7, cut = 50, min = 0,
max = 100)$consistencymatrix

# To estimate and retrieve consistency statistics using ccStats(),
# feed it the appropriate entries of the consistency matrix.
ccStats(ii = cmat["i", "i"], ij = cmat["i", "j"],
ji = cmat["j", "i"], jj = cmat["j", "j"])

confmat Confusion matrix

Description

Organizes supplied values of true and false positives and negatives into a confusion matrix.

Usage

confmat(tp, tn, fp, fn, output = "freq")

Arguments

tp The frequency or rate of true-positive classifications.
tn The frequency or rate of true-negative classifications.
fp The frequency or rate of false-positive classifications.
fn The frequency or rate of false-negative classifications.
output Whether the returned output reflects frequencies or proportions. Defaults to

returning frequencies.

Value

A confusion matrix organizing the input values of true and false positive and negatives.

Examples

# Generate some true and observed conditions.
set.seed(1234)
true.ability <- rbeta(50, 4, 4)
true.category <- ifelse(true.ability < 0.5, 0, 1)
observed.score <- rbinom(50, 50, true.ability)
observed.category <- ifelse(observed.score < 25, 0, 1)
# Calculate the frequencies of true and false positives and negatives based on the true and
# observed conditions.
TP <- sum(ifelse(observed.category == 0 & true.category == 0, 1, 0))
FP <- sum(ifelse(observed.category == 0 & true.category != 0, 1, 0))
TN <- sum(ifelse(observed.category == 1 & true.category == 1, 1, 0))
FN <- sum(ifelse(observed.category == 1 & true.category != 1, 1, 0))
# Organize the above values in a confusion matrix using the confmat function:
confmat(tp = TP, fp = FP, tn = TN, fn = FN)
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dBeta.4P Probability Density under the Four-Parameter Beta Probability Den-
sity Distribution.

Description

Gives the density at desired values of x under the Four-Parameter Beta Probability Density Distri-
bution.

Usage

dBeta.4P(x, l, u, alpha, beta)

Arguments

x Value of x.

l The first (lower) location parameter.

u The second (upper) location parameter.

alpha The first shape parameter.

beta The second shape parameter.

Value

The value for the probability density at specified values of x.

Examples

# Assume some variable follows a four-parameter Beta distribution with
# location parameters l = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the probability density at a specific point of
# the distribution (e.g., 0.5) using dBeta.4P():
dBeta.4P(x = 0.5, l = 0.25, u = 0.75, alpha = 5, beta = 3)

dBeta.pBeta An implementation of a Beta-density Compound Cumulative-Beta Dis-
tribution.

Description

The Beta Compound Beta distribution: The product of the four-parameter Beta probability density
function and the Beta cumulative probability function. Used in the Livingston and Lewis approach
to classification accuracy and consistency, the output can be interpreted as the population density of
passing scores produced at "x" (a value of true-score).
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Usage

dBeta.pBeta(x, l, u, alpha, beta, n, c, lower.tail = FALSE)

Arguments

x x-axis input for which p (proportion or probability) is to be computed.

l The lower-bound of the four-parameter Beta distribution.

u The upper-bound of the four-parameter Beta distribution.

alpha The alpha shape-parameter of the Beta density distribution.

beta The beta shape-parameter of the Beta density distribution.

n The number of trials for the Beta cumulative probability distribution.

c The "true-cut" (proportion) of on the Beta cumulative probability distribution.

lower.tail Logical. Whether to compute the lower or upper tail of the Beta cumulative
probability distribution. Default is FALSE (i.e., upper tail).

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Examples

# Given a four-parameter Beta distribution with parameters l = 0.25, u = 0.75,
# alpha = 5, and beta = 3, and a Beta error distribution with number of
# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of 0.5), the population density of passing scores produced at true-score
# (x) = 0.5 can be calculated as:
dBeta.pBeta(x = 0.5, l = 0.25, u = 0.75, a = 5, b = 3, n = 10, c = 0.5)

# Conversely, the density of failing scores produced at x can be calculated
# by passing the additional argument "lower.tail = TRUE" to the function.
# That is:
dBeta.pBeta(x = 0.5, l = 0.25, u = 0.75, a = 5, b = 3, n = 10, c = 0.5,
lower.tail = TRUE)

# By integration, the population proportion of (e.g.) passing scores in some
# region of the true-score distribution (e.g. between 0.25 and 0.5) can be
# calculated as:
integrate(function(x) { dBeta.pBeta(x, 0.25, 0.75, 5, 3, 10, 0.5) },
lower = 0.25, upper = 0.5)
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dBeta.pBinom An implementation of the Beta-density Compound Cumulative Bino-
mial Distribution.

Description

The Beta Compound Binomial distribution: The product of the four-parameter Beta probability
density function and the binomial cumulative probability mass function. Used in the Livingston
and Lewis approach to classification accuracy and consistency, the output can be interpreted as the
population density of passing scores produced at "x" (a value of true-score).

Usage

dBeta.pBinom(x, l, u, alpha, beta, n, c, lower.tail = FALSE)

Arguments

x x-axis input for which p (proportion or probability) is to be computed.

l The lower-bound of the four-parameter Beta distribution.

u The upper-bound of the four-parameter Beta distribution.

alpha The alpha shape-parameter of the Beta distribution.

beta The beta shape-parameter of the Beta distribution.

n The number of trials for the Binomial distribution.

c The "true-cut" (proportion) of the Binomial distribution.

lower.tail Logical. Whether to compute the lower or upper tail of the Binomial distribu-
tion. Default is FALSE (i.e., upper tail).

Note

The Binomial distribution cut-point is up-to but not including, unlike the standard behaviour of
base-R pbinom() function.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).
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Examples

# Given a four-parameter Beta distribution with parameters l = 0.25, u = 0.75,
# alpha = 5, and beta = 3, and a Binomial error distribution with number of
# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of 0.5), the population density of passing scores produced at true-score
# (x) = 0 can be calculated as:
dBeta.pBinom(x = 0.5, l = 0.25, u = 0.75, a = 5, b = 3, n = 10, c = 0.5)

# Conversely, the density of failing scores produced at x can be calculated
# by passing the additional argument "lower.tail = TRUE" to the function.
# That is:
dBeta.pBinom(x = 0.5, l = 0.25, u = 0.75, a = 5, b = 3, n = 10, c = 0.5,
lower.tail = TRUE)

#By integration, the population proportion of (e.g.) passing scores in some
#region of the true-score distribution (e.g. between 0.25 and 0.5) can be
#calculated as:
integrate(function(x) { dBeta.pBinom(x, 0.25, .75, 5, 3, 10, 0.5) },
lower = 0.25, upper = 0.5)

dBeta.pGammaBinom An implementation of a Beta-density Compound Cumulative Gamma-
Binomial Distribution.

Description

The Beta Compound Binomial distribution: The product of the four-parameter Beta probability
density function and the binomial cumulative probability mass function. Used in the Livingston
and Lewis approach to classification accuracy and consistency, the output can be interpreted as the
population density of passing scores produced at "x" (a value of true-score).

Usage

dBeta.pGammaBinom(x, l, u, alpha, beta, n, c, lower.tail = FALSE)

Arguments

x x-axis input for which p (proportion or probability) is to be computed.

l The lower-bound of the four-parameter Beta distribution.

u The upper-bound of the four-parameter Beta distribution.

alpha The alpha shape-parameter of the four-parameter Beta distribution.

beta The beta shape-parameter of the four-parameter Beta distribution.

n The number of "trials" for the Gamma-Binomial distribution.

c The "true-cut" (proportion) on the Gamma-Binomial distribution. Need not be
an integer (unlike Binomial distribution).

lower.tail Logical. Whether to compute the lower or upper tail of the Binomial distribu-
tion. Default is FALSE (i.e., upper tail).
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References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes.American College Test-
ing Research Report Series.

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Lord, Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

# Given a four-parameter Beta distribution with parameters l = 0.25, u = 0.75,
# alpha = 5, and beta = 3, and a Binomial error distribution with number of
# trials (n) = 10 and a cutoff-point (c) at 50% correct (i.e., proportion correct
# of 0.5), the population density of passing scores produced at true-score
# (x) = 0 can be calculated as:
dBeta.pGammaBinom(x = 0.5, l = 0.25, u = 0.75, a = 5, b = 3, n = 10, c = 0.5)

# Conversely, the density of failing scores produced at x can be calculated
# by passing the additional argument "lower.tail = TRUE" to the function.
# That is:
dBeta.pGammaBinom(x = 0.5, l = 0.25, u = 0.75, a = 5, b = 3, n = 10.1, c = 0.5,
lower.tail = TRUE)

#By integration, the population proportion of (e.g.) passing scores in some
#region of the true-score distribution (e.g. between 0.25 and 0.5) can be
#calculated as:
integrate(function(x) { dBeta.pGammaBinom(x, 0.25, 0.75, 5, 3, 10, 0.5) },
lower = 0.25, upper = 0.5)

dBetaBinom Probability Mass under the Beta-Binomial Probability-Mass Distribu-
tion.

Description

Gives the density at x under the Beta-Binomial PMF.

Usage

dBetaBinom(x, N, l, u, alpha, beta)

Arguments

x Value of x (a specific number of successes).

N The total number of trials.

l The first (lower) location parameter.
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u The second (upper) location parameter.

alpha The first shape parameter.

beta The second shape parameter.

Value

The value for the probability mass at x given the specified Beta-Binomial distribution.

Examples

# Assume some variable follows a Beta-Binomial distribution with 100 number
# of trials, and with probabilities of successful trials drawn from a four-
# parameter Beta distribution with location parameters l = 0.25 and u = 0.75
# and shape parameters alpha = 5 and beta = 3. To compute the probability
# density at a specific point of the distribution (e.g., 50):
dBetaBinom(x = 50, N = 100, l = 0.25, u = 0.75, alpha = 5, beta = 3)

dBetacBinom Probability Mass function for Lord’s Beta Compound Binomial Dis-
tribution.

Description

Gives the density at x under the Beta Compound-Binomial distribution, where the Compound-
Binomial distribution is Lord’s two-term approximation.

Usage

dBetacBinom(x, N, k, l, u, alpha, beta)

Arguments

x Value of x (a specific number of successes).

N Number of trials.

k Lord’s k (see documentation for the Lords.k() function).

l The lower-bound location parameter of the four-parameter Beta distribution.

u The upper-bound location parameter of the four-parameter Beta distribution.

alpha The first shape-parameter of the four-parameter Beta distribution.

beta The second shape-parameter of the four-parameter Beta distribution. # Assume
some variable follows a Beta compound Binomial distribution with 100 # trials,
Lord’s k = 1, and probabilities of successful trials drawn from a # four-parameter
Beta distribution with location-parameters l = .15 and u = # .85, and shape pa-
rameters alpha = 6 and beta = 4. To compute the # probability density at a
specific point of the distribution (e.g., 50): dBetacBinom(x = 50, N = 100, k =
1, l = .15, u = .85, alpha = 6, beta = 4)
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dBetaMS Density Under a Specific Point of the Beta Probability Density Distri-
bution with Specific Location Parameters, Mean, and Variance.

Description

Calculates the density under specific points of the Standard Beta probability density distribution
with defined mean and variance or standard deviation.

Usage

dBetaMS(x, mean, variance = NULL, sd = NULL, l = 0, u = 1)

Arguments

x A specific point on the x-axis of the Standard Beta Probability Density Distri-
bution.

mean The mean of the target Standard Beta probability density distribution.

variance The variance of the target Standard Beta probability density distribution.

sd The standard deviation of the target Standard Beta probability density distribu-
tion.

l The lower-bound location parameter. Default set to 0 (the standard Beta distri-
bution).

u The upper-bound location parameter. Default set to 1 (the standard Beta distri-
bution).

Value

A numeric value representing the required value for the beta Shape-parameter in order to produce a
Standard Beta probability density distribution with the target mean and variance.

Examples

# To compute the density at a specific point (e.g., 0.5) along the Standard
# (two-parameter) Probability Density Distribution with mean of 0.6 and variance of 0.04:
dBetaMS(x = 0.5, mean = 0.6, variance = 0.04)

# To compute the density at a specific point (e.g., 50) along the four-
# parameter Beta distribution with a mean of 60, variance of 400, and lower-
# bound of 0 and upper-bound of 100:
dBetaMS(x = 50, mean = 60, variance = 400, l = 0, u = 100)
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dcBinom Probability Mass function for Lord’s Two-Term Approximation to the
Compound Binomial Distribution.

Description

Gives the density at x under Lord’s two-term approximation to the compound Binomial PMF.

Usage

dcBinom(x, N, k, p)

Arguments

x Value of x (a specific number of successes).
N The total number of trials.
k Lord’s k (see documentation for the Lords.k() function).
p Probability of success for each trial.

Examples

# Assume some variable follows a compound Binomial distribution with 100
# trials, a 50% probability of success on each trial, and Lord's k = 1. To
# compute the probability density at a specific point of the distribution
# (e.g., 50):
dcBinom(x = 50, N = 100, k = 1, p = .5)

dfac Descending (falling) factorial.

Description

Calculate the descending (or falling) factorial of a value x of order r.

Usage

dfac(x, r, method = "product")

Arguments

x A value for which the descending factorial is to be calculated.
r The power x is to be raised to.
method The method by which the descending factorials are to be calculated. Default is

"product" which uses direct arithmetic. Alternative is "gamma" which calcu-
lates the ascending factorial using the Gamma function. The alternative method
might be faster but might fail because the Gamma function is not defined for
negative integers (returning Inf).
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Value

The descending factorial of value x raised to the r’th power.

Examples

# To calculate the 4th descending factorial for a value (e.g., 3.14):
dfac(x = 3.14, r = 4)

# To calculate the 5th descending factorial for values 3.14, 2.72, and 0.58:
dfac(x = c(3.14, 2.72, 0.58), r = 5)

dGammaBinom Probability density function under the Gamma-extended Binomial dis-
tribution.

Description

Probability density function under the Gamma-extended Binomial distribution.

Usage

dGammaBinom(x, size, prob, nc = FALSE)

Arguments

x Vector of quantiles.

size Number of "trials" (zero or more). Need not be integer.

prob Probability of "success" on each "trial". Need not be integer.

nc Whether to include a normalizing constant making sure that the sum of the dis-
tribution’s density is 1.

References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

#' # Assume some variable follows a Gamma-Binomial distribution with
# "number of trials" = 10.5 and probability of "success" for each "trial"
# = 0.75, to compute the probability density to attain a "number of success"
# at a specific point (e.g., 7.5 "successes"):
dGammaBinom(x = 7.5, size = 10.5, prob = 0.75)

# Including a normalizing constant (then diverges from binomial dist.):
dGammaBinom(x = 7.5, size = 10.5, prob = 0.75, nc = TRUE)
dGammaBinom(x = 7, size = 10, prob = 0.75) == dbinom(7, 10, 0.75)
dGammaBinom(x = 7, size = 10, prob = 0.75, nc = TRUE) == dbinom(7, 10, 0.75)
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ETL Livingston and Lewis’ "Effective Test Length".

Description

According to Livingston and Lewis (1995), "The effective test length corresponding to a test score is
the number of discrete, dichotomously scored, locally independent, equally difficult items required
to produce a total score of the same reliability."

Usage

ETL(mean, variance, min = 0, max = 1, reliability)

Arguments

mean The mean of the observed-score distribution.

variance The variance of the observed-score distribution.

min The lower-bound (minimum possible value) of the observed-score distribution.
Default is 0 (assuming observed scores represent proportions).

max The upper-bound (maximum possible value) of the observed-score distribution.
Default is 1 (assuming observed scores represent proportions).

reliability The reliability of the observed scores (proportion of observed-score distribution
variance shared with true-score distribution).

Value

An estimate of the effective length of a test, given the stability of the observations it produces.

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(0, 100))

# Suppose the reliability of this test was estimated to 0.7. To estimate and
# retrieve the effective test length using ETL():
ETL(mean = mean(testdata), variance = var(testdata), min = 0, max = 100,
reliability = .7)
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gchoose Gamma-extended Binomial coefficient (choose function).

Description

Extends the Binomial coefficient for positive non-integers (including 0) by employing the Gamma
rather than the factorial function.

Usage

gchoose(n, k)

Arguments

n In Binomial terms, the number of Binomial "trials". Need not be an integer.

k In Binomial terms, the number of successful "trials". Need not be an integer.

Note

Not defined for negative integers.

References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

# Compare choose function with gchoose function for integers:
gchoose(c(8, 9, 10), c(3, 4, 5)) == choose(c(8, 9, 10), c(3, 4, 5))

# The gchoose function also works for non-integers:
gchoose(10.5, 7.5)

HB.beta.tp.fit Estimate Beta True-Score Distribution Based on Observed-Score Raw-
Moments and Lord’s k.

Description

Estimator for the Beta true-score distribution shape-parameters from the observed-score distribution
and Lord’s k. Returns a list with entries representing the lower- and upper shape parameters (l and
u), and the shape parameters (alpha and beta) of the four-parameters beta distribution, as well as
Lord’s k and the test length.

Usage

HB.beta.tp.fit(x, N, k, true.model = "4P", failsafe = FALSE, l = 0, u = 1)
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Arguments

x Vector of observed-scores.

N The test length.

k Lord’s k (see documentation for the Lords.k() function).

true.model The type of Beta distribution which is to be fit to the moments of the true-
score distribution. Options are "4P" and "2P", where "4P" refers to the four-
parameter (with the same mean, variance, skewness, and kurtosis), and "2P" the
two-parameter solution where both location-parameters are specified (with the
same mean and variance).

failsafe Logical. Whether to revert to a fail-safe two-parameter solution should the four-
parameter solution contain invalid parameter estimates.

l If failsafe = TRUE or true.model = "2P": The lower-bound of the Beta distri-
bution. Default is 0 (i.e., the lower-bound of the Standard, two-parameter Beta
distribution).

u If failsafe = TRUE or true.model = "2P": The upper-bound of the Beta distri-
bution. Default is 1 (i.e., the upper-bound of the Standard, two-parameter Beta
distribution).

Value

A list with the parameter values of a four-parameter Beta distribution. "l" is the lower location-
parameter, "u" the upper location-parameter, "alpha" the first shape-parameter, and "beta" the sec-
ond shape-parameter. Also includes Lord’s k and the test length.

References

Hanson, B. A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound Bi-
nomial Model and the Calculation of Classification Consistency Indexes. American College Testing
Research Report Series. Retrieved from https://files.eric.ed.gov/fulltext/ED344945.pdf

Lord, F. M. (1965). A strong true-score theory, with applications. Psychometrika. 30(3). pp.
239–270. doi: 10.1007/BF02289490

Examples

# Generate some fictional data. Say 1000 individuals take a 100-item test
# where all items are equally difficult, and the true-score distribution
# is a four-parameter Beta distribution with location parameters l = 0.25,
# u = 0.75, alpha = 5, and beta = 3, and the error distribution is a
# compound Binomial with Lord's k = 2:
set.seed(12)
testdata <- rcBinom(1000, 100, 2, rBeta.4P(1000, 0.25, 0.75, 5, 3))

# To estimate the four-parameter Beta distribution parameters from this
# sample of observations:
HB.beta.tp.fit(testdata, 100, 2)
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HB.CA An Implementation of the Hanson and Brennan Approach to Esti-
mate Classification Consistency and Accuracy based on Observed Test
Scores and Test Reliability.

Description

An implementation of what has been come to be known as the "Hanson and Brennan approach" to
classification consistency and accuracy, which by employing a compound beta-binomial distribution
assumes that true-scores conform to the four-parameter beta distribution, and errors of measurement
to a two-term approximation of the compound binomial distribution. Under these assumptions, the
expected classification consistency and accuracy of tests can be estimated from observed outcomes
and test reliability.

Usage

HB.CA(
x = NULL,
reliability,
cut,
testlength,
true.model = "4P",
truecut = NULL,
output = c("accuracy", "consistency"),
failsafe = TRUE,
l = 0,
u = 1,
modelfit = 10

)

Arguments

x A vector of observed scores, or a list specifying parameter values. If a list
is provided, the list entries must be named after the parameters: l and u for
the location-, and alpha and beta for the shape parameters of the Beta true-
score distribution, and k for the "Lord’s k" parameter (see documentation for
the Lords.k function).

reliability The observed-score squared correlation (i.e., proportion of shared variance) with
the true-score.

cut The cutoff value for classifying observations into above/below categories.

testlength The total number of test items (or maximum possible score). Must be an integer.

true.model The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
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as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

truecut Optional specification of a "true" cutoff. Useful for producing ROC curves (see
documentation for the HB.ROC() function).

output Character vector indicating which types of statistics (i.e, accuracy and/or con-
sistency) are to be computed and included in the output. Permissible values are
"accuracy" and "consistency".

failsafe Logical value indicating whether to engage the automatic fail-safe defaulting
to the two-parameter Beta true-score distribution if the four-parameter fitting
procedure produces impermissible parameter estimates. Default is TRUE (i.e.,
the function will engage failsafe if the four-parameter Beta-distribution fitting-
procedure produced impermissible estimates).

l If true.model = "2P" or failsafe = TRUE, the lower-bound location parameter
to be used in the two-parameter fitting procedure. Default is 0 (i.e., the lower-
bound of the Standard Beta distribution).

u If true.model = "2P" or failsafe = TRUE, the upper-bound location parameter
to be used in the two-parameter fitting procedure. Default is 1 (i.e., the upper-
bound of the Standard Beta distribution).

modelfit Allows for controlling the chi-square test for model fit by setting the minimum
bin-size for expected observations. Can alternatively be set to NULL to forego
model-fit testing (speeding up the function). In accordance with standard rec-
ommendations for chi-square tests the default input to this argument is 10.

Value

A list containing the estimated parameters necessary for the approach (i.e., the effective test-length
and the beta distribution parameters), a chi-square test of model-fit, the confusion matrix containing
estimated proportions of true/false pass/fail categorizations for a test, diagnostic performance statis-
tics, and / or a classification consistency matrix and indices. Accuracy output includes a confusion
matrix and diagnostic performance indices, and consistency output includes a consistency matrix
and consistency indices p (expected proportion of agreement between two independent test admin-
istrations), p_c (proportion of agreement on two independent administrations expected by chance
alone), and Kappa (Cohen’s Kappa).

Note

This implementation of the Hanson-Brennan approach is much slower than the implementation
of the Livingston and Lewis approach, as there is no native implementation of Lord’s two-term
approximation to the Compound-Binomial distribution in R. This implementation uses a "brute-
force" method of computing the cumulative probabilities from the compound-Binomial distribution,
which will by necessity be more resource intensive.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.
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Lord. Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Lewis, Don and Burke, C. J. (1949). The Use and Misuse of the Chi-Square Test. Psychological
Bulletin, 46(6).

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 50.
# Generate some fictional data. Say, 1000 individuals take a 20-item test.
set.seed(1234)
p.success <- rBeta.4P(1000, 0.15, 0.85, 6, 4)
for (i in 1:20) {
if (i == 1) {

rawdata <- matrix(nrow = 1000, ncol = 20)
}

rawdata[, i] <- rbinom(1000, 1, p.success)
}

# Suppose the cutoff value for attaining a pass is 10 items correct, and
# that the reliability of this test was estimated using the Cronbach's Alpha
# estimator. To estimate and retrieve the estimated parameters, confusion and
# consistency matrices, and accuracy and consistency indices using HB.CA():
HB.CA(x = rowSums(rawdata), reliability = cba(rawdata), cut = 10,
testlength = 20)

HB.CA.MC An Extension of the Hanson and Brennan Approach to Estimate Clas-
sification Consistency and Accuracy for Multiple Classifications based
on Observed Test Scores and Test Reliability.

Description

An implementation of what has been come to be known as the "Hanson and Brennan approach" to
classification consistency and accuracy, which by employing a compound beta-binomial distribution
assumes that true-scores conform to the four-parameter beta distribution, and errors of measurement
to the binomial distribution. Under these assumptions, the expected classification consistency and
accuracy of tests can be estimated from observed outcomes and test reliability.

Usage

HB.CA.MC(
x = NULL,
reliability,
cut,
testlength,
true.model = "4P",
failsafe = TRUE,
l = 0,
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u = 1,
modelfit = 10

)

Arguments

x A vector of observed scores, or a list specifying parameter values. If a list
is provided, the list entries must be named after the parameters: l and u for
the location-, and alpha and beta for the shape parameters of the Beta true-
score distribution, and k for the "Lord’s k" parameter (see documentation for
the Lords.k function).

reliability The observed-score squared correlation (i.e., proportion of shared variance) with
the true-score.

cut A vector of cut-off values for classifying observations into two or more cate-
gories.

testlength The total number of test items (or maximum possible score). Must be an integer.

true.model The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

failsafe Logical value indicating whether to engage the automatic fail-safe defaulting
to the two-parameter Beta true-score distribution if the four-parameter fitting
procedure produces impermissible parameter estimates. Default is TRUE (i.e.,
the function will engage failsafe if the four-parameter Beta-distribution fitting-
procedure produced impermissible estimates).

l If true.model = "2P" or failsafe = TRUE, the lower-bound location parameter
to be used in the two-parameter fitting procedure. Default is 0 (i.e., the lower-
bound of the Standard Beta distribution).

u If true.model = "2P" or failsafe = TRUE, the upper-bound location parameter
to be used in the two-parameter fitting procedure. Default is 1 (i.e., the upper-
bound of the Standard Beta distribution).

modelfit Allows for controlling the chi-square test for model fit by setting the minimum
bin-size for expected observations. Can alternatively be set to NULL to forego
model-fit testing (speeding up the function). In accordance with standard rec-
ommendations for chi-square tests the default input to this argument is 10.

Value

A list containing the estimated parameters necessary for the approach (i.e., Lord’s k, test-length,
and the true-score Beta distribution parameters), a chi-square test of model-fit, the confusion matrix
containing estimated proportions of true/false positive/negative categorizations for a test, diagnos-
tic performance statistics, and/or a classification consistency matrix and indices. Accuracy output
includes a confusion matrix and diagnostic performance indices, and consistency output includes a
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consistency matrix and consistency indices p (expected proportion of agreement between two in-
dependent test administrations), p_c (proportion of agreement on two independent administrations
expected by chance alone), and Kappa (Cohen’s Kappa).

Note

This implementation of the Hanson-Brennan approach is much slower than the implementation
of the Livingston and Lewis approach, as there is no native implementation of Lord’s two-term
approximation to the Compound-Binomial distribution in R. This implementation uses a "brute-
force" method of computing the cumulative probabilities from the compound-Binomial distribution,
which will by necessity be more resource intensive.

References

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Lord. Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Lewis, Don and Burke, C. J. (1949). The Use and Misuse of the Chi-Square Test. Psychological
Bulletin, 46(6).

Examples

# Generate some fictional data. Say, 1000 individuals take a 20-item test.
set.seed(1234)
p.success <- rBeta.4P(1000, 0.15, 0.85, 6, 4)
for (i in 1:20) {
if (i == 1) {

rawdata <- matrix(nrow = 1000, ncol = 20)
}

rawdata[, i] <- rbinom(1000, 1, p.success)
}

# Suppose the cutoff value for being placed in the lower category is a score
# below 10, middle category 15, and the upper category 15 or above. Using the
# cba() function to estimate the reliability of this test, to use the
# HB.CA.MC() function or estimating diagnostic performance and consistency
# indices of classifications when using several cut-points:
(output <- HB.CA.MC(rowSums(rawdata), cba(rawdata), c(10, 15), 20))

# The output for this function can get quite verbose as more categories are
# included. The output from the function can be fed to the MC.out.tabular()
# function in order to organize the output in a tabular format.
MC.out.tabular(output)
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HB.ROC ROC curves for the Hanson and Brennan approach.

Description

Generate a ROC curve plotting the false-positive rate against the true-positive rate at different cut-
off values across the observed-score scale.

Usage

HB.ROC(
x = NULL,
reliability,
testlength,
truecut,
true.model = "4P",
failsafe = TRUE,
l = 0,
u = 1,
AUC = FALSE,
maxJ = FALSE,
maxAcc = FALSE,
locate = NULL,
raw.out = FALSE,
grainsize = testlength

)

Arguments

x A vector of observed results (sum scores) or a list of parameter values (see doc-
umentation for the HB.beta.tp.fit() function.

reliability The reliability coefficient of the test.

testlength The total number of test items (or maximum possible score). Must be an integer.

truecut The point along the x-scale that marks true category membership.

true.model The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

failsafe If true-model == "4P": Whether to engage a fail-safe reverting to a two-parameter
true-score distribution solution should the four-parameter fitting procedure pro-
duce impermissible results. Default is TRUE (engage fail-safe in the event of
impermissible estimates).
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l If true.model == "2P" or failsafe == TRUE: The lower-bound location param-
eter of the two-parameter true-score distribution solution.

u If true.model == "2P" or failsafe == TRUE: The upper-bound location pa-
rameter of the two-parameter true-score distribution solution.

AUC Logical. Calculate and include the area under the curve? Default is FALSE.

maxJ Logical. Mark the point along the curve where Youden’s J statistic is maxi-
mized? Default is FALSE.

maxAcc Logical. Mark the point along the curve where the Accuracy statistic is maxi-
mized? Default is FALSE.

locate Ask the function to locate the cut-point at which sensitivity or NPV is greater
than or equal to some value, or specificity or PPV is lesser than or equal to some
value. Take as input a character-vector of length 2, with the first argument being
which index is to be found (e.g., "sensitivity"), and the second argument the
value to locate (e.g., "0.75"). For example: c("sensitivity", "0.75").

raw.out Give raw coordinates as output rather than plot? Default is FALSE

grainsize Specify the number of cutoff-points for which the ROC curve is to be calculated.
The greater this number the greater the accuracy. Default is set to the stated test
length (N).

Value

A plot tracing the ROC curve for the test, or matrix of coordinates if raw.out is TRUE.

Note

This implementation of the Hanson-Brennan approach is much slower than the implementation
of the Livingston and Lewis approach, as there is no native implementation of Lord’s two-term
approximation to the Compound-Binomial distribution in R. This implementation uses a "brute-
force" method of computing the cumulative probabilities from the compound-Binomial distribution,
which will by necessity be more resource intensive.

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 50.
# Generate some fictional data. Say, 1000 individuals take a 20-item test.
set.seed(1234)
p.success <- rBeta.4P(1000, 0.15, 0.85, 6, 4)
for (i in 1:20) {
if (i == 1) {

rawdata <- matrix(nrow = 1000, ncol = 20)
}

rawdata[, i] <- rbinom(1000, 1, p.success)
}

# Suppose the cutoff value for attaining a pass is 10 items correct, and
# that the reliability of this test was estimated using the Cronbach's Alpha
# estimator. To draw the ROC-graph and locate the points at which Youden's J
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# and Accuracy are maximized:
HB.ROC(rowSums(rawdata), cba(rawdata), 20, 10, maxAcc = TRUE, maxJ = TRUE)

# For further examples regarding how to use the locate argument to locate
# points at which various criteria are satisfied, see documentation for the
# LL.ROC() function.

HB.tsm Proportional True-Score Distribution Raw Moments for the Hanson-
Brennan Approach to Classification Accuracy and Consistency.

Description

An implementation of Lords (1965, p. 265) equation 37 for estimating the raw moments of the
true-score distribution.

Usage

HB.tsm(x, r, N, k)

Arguments

x Vector of values representing sum-scores.

r The number of raw moments to be calculated.

N The number of test items (i.e., test length).

k Lord’s k (see documentation for the Lords.k() function.

Examples

# Generate some data under the Beta Compound-Binomial distribution, where the
# Compound Binomial distribution has 100 trials and Lord's k = 2, and the
# Beta distribution has location parameters l = .15 and u = .85, and shape
# parameters alpha = 6 and beta = 4:
obs <- rBetacBinom(1000, 100, 2, .15, .85, 6, 4)

# To estimate the first four raw moments of the underlying Beta distribution:
HB.tsm(x = obs, r = 4, N = 100, k = 2)
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LABMSU Lower Location Parameter Given Shape Parameters, Mean, Variance,
and Upper Location Parameter of a Four-Parameter Beta Probability
Density Distribution.

Description

Calculates the lower-bound value required to produce a Beta probability density distribution with
defined moments and parameters. Be advised that not all combinations of moments and parameters
can be satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both
location-parameters, meaning that the value of the lower-location parameter will take on which ever
value it must, and cannot be specified).

Usage

LABMSU(
alpha = NULL,
beta = NULL,
u = NULL,
mean = NULL,
variance = NULL,
sd = NULL

)

Arguments

alpha The alpha (first) shape-parameter of the target Beta probability density distribu-
tion.

beta The beta (second) shape-parameter of the target Beta probability density distri-
bution.

u The upper-bound of the Beta distribution. Default is NULL (i.e., does not take
a specified u-parameter into account).

mean The mean (first raw moment) of the target Standard Beta probability density
distribution.

variance The variance (second central moment) of the target Standard Beta probability
density distribution.

sd Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.

Value

A numeric value representing the required value for the Beta lower location-parameter (l) in order
to produce a Beta probability density distribution with the target moments and parameters.
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Examples

# Generate some fictional data.
set.seed(1234)
testdata <- rBeta.4P(100000, 0.25, 0.75, 5, 3)
hist(testdata, xlim = c(0, 1), freq = FALSE)

# Suppose you know three of the four necessary parameters to fit a four-
# parameter Beta distribution (i. e., u = 0.75, alpha = 5, beta = 3) to this
# data. To find the value for the necessary l parameter, estimate the mean
# and variance of the distribution:
M <- mean(testdata)
S2 <- var(testdata)

# To find the l parameter necessary to produce a four-parameter Beta
# distribution with the target mean, variance, and u, alpha, and beta
# parameters using the LMSBAU() function:
(l <- LABMSU(alpha = 5, beta = 3, mean = M, variance = S2, u = 0.75))
curve(dBeta.4P(x, l, .75, 5, 3), add = TRUE, lwd = 2)

LL.CA An Implementation of the Livingston and Lewis (1995) Approach to
Estimate Classification Consistency and Accuracy based on Observed
Test Scores and Test Reliability.

Description

An implementation of what has been come to be known as the "Livingston and Lewis approach" to
classification consistency and accuracy, which by employing a compound beta-binomial distribution
assumes that true-scores conform to the four-parameter beta distribution, and errors of measurement
to the binomial distribution. Under these assumptions, the expected classification consistency and
accuracy of tests can be estimated from observed outcomes and test reliability.

Usage

LL.CA(
x = NULL,
reliability,
cut,
min = 0,
max = 1,
true.model = "4P",
truecut = NULL,
output = c("accuracy", "consistency"),
failsafe = TRUE,
l = 0,
u = 1,
modelfit = c(nbins = 100, minbin = 10)

)
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Arguments

x A vector of observed scores, or a list specifying parameter values. If a list is
provided, the list entries must be named after the parameters: l and u for the
location-, and alpha and beta for the shape parameters of the Beta true-score
distribution, and etl for the effective test length (see documentation for the ETL
function).

reliability The observed-score squared correlation (i.e., proportion of shared variance) with
the true-score.

cut The cutoff value for classifying observations into pass or fail categories.

min The minimum value possible to attain on the test. Default is 0.

max The maximum value possible to attain on the test. Default is 1 (assumes that the
values contained in x represents proportions of maximum credit).

true.model The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

truecut Optional specification of a "true" cutoff. Useful for producing ROC curves (see
documentation for the LL.ROC() function).

output Character vector indicating which types of statistics (i.e, accuracy and/or con-
sistency) are to be computed and included in the output. Permissible values are
"accuracy" and "consistency".

failsafe Logical value indicating whether to engage the automatic fail-safe defaulting
to the two-parameter Beta true-score distribution if the four-parameter fitting
procedure produces impermissible parameter estimates. Default is TRUE (i.e.,
the function will engage failsafe if the four-parameter Beta-distribution fitting-
procedure produced impermissible estimates).

l If true.model = "2P" or failsafe = TRUE, the lower-bound location parameter
to be used in the two-parameter fitting procedure. Default is 0 (i.e., the lower-
bound of the Standard Beta distribution).

u If true.model = "2P" or failsafe = TRUE, the upper-bound location parameter
to be used in the two-parameter fitting procedure. Default is 1 (i.e., the upper-
bound of the Standard Beta distribution).

modelfit Allows for controlling the chi-square test for model fit. The argument takes
either a vector of two values, or NULL. If set to NULL, the model-fit test is not
executed. If a vector of values is supplied, the first value is to represent the
initial number of bins the distribution of scores is to be divided in to. This
value is set to a default of 100. If this default results in too few bins to conduct
the chi-square test, this value can be made larger. The second value represents
the minimum expected number of observations that the bins should consist of.
In accordance with standard recommendations for chi-square tests, the default
value is set to 10.
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Value

A list containing the estimated parameters necessary for the approach (i.e., the effective test-length
and the beta distribution parameters), a chi-square test of model-fit, the confusion matrix containing
estimated proportions of true/false pass/fail categorizations for a test, diagnostic performance statis-
tics, and / or a classification consistency matrix and indices. Accuracy output includes a confusion
matrix and diagnostic performance indices, and consistency output includes a consistency matrix
and consistency indices p (expected proportion of agreement between two independent test admin-
istrations), p_c (proportion of agreement on two independent administrations expected by chance
alone), and Kappa (Cohen’s Kappa).

Note

It should be noted that this implementation differs from the original articulation of Livingston and
Lewis (1995) in some respects. First, the procedure includes a number of diagnostic performance
(accuracy) indices which the original procedure enables but that were not included. Second, the way
consistency is calculated differs substantially from the original articulation of the procedure, which
made use of a split-half approach. Rather, this implementation uses the approach to estimating
classification consistency outlined by Hanson (1991).

A shiny application providing a GUI for this method is available at https://hthaa.shinyapps.io/shinybeta/
.

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Lord. Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Lewis, Don and Burke, C. J. (1949). The Use and Misuse of the Chi-Square Test. Psychological
Bulletin, 46(6).

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(0, 100))

# Suppose the cutoff value for attaining a pass is 50 items correct, and
# that the reliability of this test was estimated to 0.7. To estimate and
# retrieve the estimated parameters, confusion matrix, consistency and
# accuracy statistics using LL.CA():
LL.CA(x = testdata, reliability = .7, cut = 50, min = 0, max = 100)

# Suppose the true-score parameter estimation procedure arrived at
# impermissible parameter estimates (i.e., l < 0, u > 1, alpha < 0, or
# beta < 0). For example:
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set.seed(9)
testdata <- rbinom(100, 25, rBeta.4P(100, 0.25, 1, 5, 3))
Beta.tp.fit(testdata, 0, 25, 25, failsafe = TRUE)

# Suppose further that you have good grounds for assuming that the lower-
# bound parameter is equal to 0.25 (e.g., the test consists of multiple-
# choice questions with four response options, leading to a 25% probability
# of guessing the correct answer per question), and good reason to believe
# that the upper-bound parameter is equal to 1 (i.e., there is no reason to
# believe that there are no members of the population who will attain a
# perfect score across all possible test-forms.) To set these lower and
# upper bounds for the fitting procedure in the LL.CA() function, set
# the argument true.model = "2p", and specify the location parameters
# l = 0.25 and u = 1:
LL.CA(testdata, 0.6287713, 12, 0, 25, true.model = "2p", l = 0.25, u = 1)

# Alternatively to supplying scores to which a true-score distribution is
# to be fit, a list with true-score distribution parameter values can be
# supplied manually along with the effective test length (see documentation
# for the ETL() function), foregoing the need for actual data. The list
# entries must be named. "l" is the lower-bound and "u" the upper-bound
# location parameters of the true-score distribution, "alpha" and "beta" for
# the shape parameters, and "etl" for the effective test-length..
trueparams <- list("l" = 0.25, "u" = 0.75, "alpha" = 5, "beta" = 3, "etl" = 50)
LL.CA(x = trueparams, cut = 50, min = 0, max = 100)

LL.CA.MC An Extension of the Livingston and Lewis (1995) Approach to Estimate
Classification Consistency and Accuracy for Multiple Classifications
based on Observed Test Scores and Test Reliability.

Description

An implementation of what has been come to be known as the "Livingston and Lewis approach" to
classification consistency and accuracy, which by employing a compound beta-binomial distribution
assumes that true-scores conform to the four-parameter beta distribution, and errors of measurement
to the binomial distribution. Under these assumptions, the expected classification consistency and
accuracy of tests can be estimated from observed outcomes and test reliability.

Usage

LL.CA.MC(
x = NULL,
reliability,
cut,
min = 0,
max = 1,
true.model = "4P",
failsafe = TRUE,
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l = 0,
u = 1,
modelfit = c(nbins = 100, minbin = 10)

)

Arguments

x A vector of observed scores, or a list specifying parameter values. If a list is
provided, the list entries must be named after the parameters: l and u for the
location-, and alpha and beta for the shape parameters of the Beta true-score
distribution, and etl for the effective test length (see documentation for the ETL
function).

reliability The observed-score squared correlation (i.e., proportion of shared variance) with
the true-score.

cut A vector of cut-off values for classifying observations into two or more cate-
gories.

min The minimum value possible to attain on the test. Default is 0.

max The maximum value possible to attain on the test. Default is 1 (assumes that the
values contained in x represents proportions of maximum credit).

true.model The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

failsafe Logical value indicating whether to engage the automatic fail-safe defaulting
to the two-parameter Beta true-score distribution if the four-parameter fitting
procedure produces impermissible parameter estimates. Default is TRUE (i.e.,
the function will engage failsafe if the four-parameter Beta-distribution fitting-
procedure produced impermissible estimates).

l If true.model = "2P" or failsafe = TRUE, the lower-bound location parameter
to be used in the two-parameter fitting procedure. Default is 0 (i.e., the lower-
bound of the Standard Beta distribution).

u If true.model = "2P" or failsafe = TRUE, the upper-bound location parameter
to be used in the two-parameter fitting procedure. Default is 1 (i.e., the upper-
bound of the Standard Beta distribution).

modelfit Allows for controlling the chi-square test for model fit. The argument takes
either a vector of two values, or NULL. If set to NULL, the model-fit test is not
executed. If a vector of values is supplied, the first value is to represent the
initial number of bins the distribution of scores is to be divided in to. This
value is set to a default of 100. If this default results in too few bins to conduct
the chi-square test, this value can be made larger. The second value represents
the minimum expected number of observations that the bins should consist of.
In accordance with standard recommendations for chi-square tests, the default
value is set to 10.
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Value

A list containing the estimated parameters necessary for the approach (i.e., the effective test-length
and the beta distribution parameters), a chi-square test of model-fit, the confusion matrix containing
estimated proportions of true/false positive/negative categorizations for a test, diagnostic perfor-
mance statistics, and/or a classification consistency matrix and indices. Accuracy output includes
a confusion matrix and diagnostic performance indices, and consistency output includes a consis-
tency matrix and consistency indices p (expected proportion of agreement between two independent
test administrations), p_c (proportion of agreement on two independent administrations expected
by chance alone), and Kappa (Cohen’s Kappa).

Note

It should be noted that this implementation differs from the original articulation of Livingston and
Lewis (1995) in some respects. First, the procedure includes a number of diagnostic performance
(accuracy) indices which the original procedure enables but that were not included. Second, the way
consistency is calculated differs substantially from the original articulation of the procedure, which
made use of a split-half approach. Rather, this implementation uses the approach to estimating
classification consistency outlined by Hanson (1991).

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Hanson, Bradley A. (1991). Method of Moments Estimates for the Four-Parameter Beta Compound
Binomial Model and the Calculation of Classification Consistency Indexes. American College Test-
ing.

Lord. Frederic M. (1965). A Strong True-Score Theory, With Applications. Psychometrika, 30(3).

Lewis, Don and Burke, C. J. (1949). The Use and Misuse of the Chi-Square Test. Psychological
Bulletin, 46(6).

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
p.success <- rBeta.4P(1000, 0.1, 0.95, 5, 3)
for (i in 1:100) {

if (i == 1) {
rawdata <- matrix(nrow = 1000, ncol = 100)

}
rawdata[, i] <- rbinom(1000, 1, p.success)

}

# Suppose the cutoff value for being placed in the lower category is a score
# below 50, second lowest 60, then 70, 80, and 90. Using the cba() function
# to estimate the reliability of this test, to use the LL.CA.MC() function
# or estimating diagnostic performance and consistency indices of
# classifications when using several cut-points:
LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = 0, max = 100)
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# The output from this function can get quite verbose when operating with
# several cut-points. In order to retrieve only model parameter estimates:
LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = 0, max = 100)$parameters

# To retrieve only the model-fit estimate:
LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = 0, max = 100)$modelfit

# To retrieve only the diagnostic performance estimates:
LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = 0, max = 100)$accuracy

# To retrieve only the classification consistency indices:
LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = 0, max = 100)$consistency

# Alternatively, the MC.out.tabular() function can be used to organize the
# category-specific indices in a tabular format:
MC.out.tabular(LL.CA.MC(rowSums(rawdata), cba(rawdata), c(50, 60, 70, 80, 90), min = 0, max = 100))

LL.ROC ROC curves for the Livingston and Lewis approach.

Description

Generate a ROC curve plotting the false-positive rate against the true-positive rate at different cut-
off values across the observed-score scale.

Usage

LL.ROC(
x = NULL,
reliability,
min = 0,
max = 1,
truecut,
true.model = "4P",
failsafe = TRUE,
l = 0,
u = 1,
AUC = FALSE,
maxJ = FALSE,
maxAcc = FALSE,
locate = NULL,
raw.out = FALSE,
grainsize = 100

)
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Arguments

x A vector of observed results.

reliability The reliability coefficient of the test.

min The minimum possible value to attain on the observed-score scale.

max The maximum value possible to attain on the test. Default is 1 (assumes that the
values contained in x represents proportions of maximum credit).

truecut The true point along the x-scale that marks the categorization-threshold.

true.model The probability distribution to be fitted to the moments of the true-score distribu-
tion. Options are "4P" (default) and "2P", referring to four- and two-parameter
Beta distributions. The "4P" method produces a four-parameter Beta distribu-
tion with the same first four moments (mean, variance, skewness, and kurtosis)
as the estimated true-score distribution, while the "2P" method produces a two-
parameter Beta distribution with the first two moments (mean and variance) as
the estimated true-score distribution.

failsafe If true-model == "4P": Whether to engage a fail-safe reverting to a two-parameter
true-score distribution solution should the four-parameter fitting procedure pro-
duce impermissible results. Default is TRUE (engage fail-safe in the event of
impermissible estimates).

l If true.model == "2P" or failsafe == TRUE: The lower-bound location param-
eter of the two-parameter true-score distribution solution.

u If true.model == "2P" or failsafe == TRUE: The upper-bound location pa-
rameter of the two-parameter true-score distribution solution.

AUC Logical. Calculate and include the area under the curve? Default is FALSE.

maxJ Logical. Mark the point along the curve where Youden’s J statistic is maxi-
mized? Default is FALSE.

maxAcc Logical. Mark the point along the curve where the Accuracy statistic is maxi-
mized? Default is FALSE.

locate Ask the function to locate the cut-point at which sensitivity or NPV is greater
than or equal to some value, or specificity or PPV is lesser than or equal to some
value. Take as input a character-vector of length 2, with the first argument being
which index is to be found (e.g., "sensitivity"), and the second argument the
value to locate (e.g., "0.75"). For example: c("sensitivity", "0.75").

raw.out Give raw coordinates as output rather than plot? Default is FALSE

grainsize Specify the number of cutoff-points for which the ROC curve is to be calculated.
The greater this number the greater the accuracy. Default is 100 points.

Value

A plot tracing the ROC curve for the test, or matrix of coordinates if raw.out is TRUE.

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
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set.seed(1234)
testdata <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))
hist(testdata / 100, xlim = c(0, 1), freq = FALSE)

# Suppose the cutoff value for attaining a pass is 50 items correct.
# Suppose further that the reliability of the test-scores were estimated to
# 0.75. To produce a plot with an ROC curve using LL.ROC(), along with the
# AUC statistics and the points at which Youden's J. is maximized:
LL.ROC(x = testdata, reliability = 0.7, truecut = 50, min = 0, max = 100,
AUC = TRUE, maxJ = TRUE)
# Or to locate the point at which accuracy is maximized:
LL.ROC(x = testdata, reliability = 0.7, truecut = 50, min = 0, max = 100,
maxAcc = TRUE)

# Using the example data above, the function can be instructed to locate an
# operational cut-point at which sensitivity or specificity is equal to or
# greater than some specified value by specifying the "locate" argument with
# c("statistic", value). For example, to locate the operational cut-point at
# which sensitivity is first equal to or greater than 0.9:
LL.ROC(testdata, reliability = 0.7, min = 0, max = 100, truecut = 50,
locate = c("sensitivity", 0.9))
# For Negative Predictive value, the point at which it is equal or greater:
LL.ROC(testdata, reliability = 0.7, min = 0, max = 100, truecut = 50,
locate = c("NPV", 0.9))
# And so on for other statistics such as Specificity and Positive Predictive
# Value.

Lords.k Function for estimating "Lord’s k" for Lord’s two-term approximation
to the compound binomial distribution.

Description

Calculates Lord’s k.

Usage

Lords.k(x, N, reliability)

Arguments

x A vector of observed-scores.

N The test length.

reliability The test-score reliability coefficient.

Value

A value representing Lord’s k
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Examples

# Generate some fictional data. Say 100 students take a 50-item long test
# where all items are equally difficult (i.e., where the true Lord's k = 0).
set.seed(1234)
p.success <- rBeta.4P(100, 0.25, 0.75, 5, 3)
for (i in 1:50) {

if (i == 1) {
rawdata <- matrix(nrow = 100, ncol = 50)

}
rawdata[, i] <- rbinom(100, 1, p.success)

}

# Estimate the reliability of these scores with Cronbach's Alpha:
reliability <- cba(rawdata)

# Estimate Lord's k using Lords.k():
Lords.k(rowSums(rawdata), 50, reliability)

MC.out.tabular Tabular organization of accuracy and consistency output from the
LL.CA.MC() function.

Description

Function that takes the output from the LL.CA.MC() function and organizes it in a table with accu-
racy and consistency indices represented by columns and categories as rows.

Usage

MC.out.tabular(x)

Arguments

x The list-output from the LL.CA.MC() function.

Examples

# Generate some fictional data. Say, 1000 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
p.success <- rBeta.4P(1000, 0.1, 0.95, 5, 3)
for (i in 1:100) {

if (i == 1) {
rawdata <- matrix(nrow = 1000, ncol = 100)

}
rawdata[, i] <- rbinom(1000, 1, p.success)

}

# Estimate accuracy and consistency where the lowest category are scores
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# below 50, second lowest 60, then 70, 80, and 90. Using the cba() function
# to estimate the reliability of this test, to use the LL.CA.MC() function
# or estimating diagnostic performance and consistency indices of
# classifications when using several cut-points:
output <- LL.CA.MC(rowSums(rawdata), cba(rawdata), seq(50, 90, 10), 0, 100)

# As this output can get quite verbose as the number of categories increase,
# the MC.out.tabular() function can be used to organize the output more
# concisely in a tabular format.
MC.out.tabular(output)

mdlfit.gfx Graphical presentation of model fit for the Beta-Binomial classifica-
tion accuracy and consistency model.

Description

Tool for visually gauging the discrepancy between the observed and model-implied frequencies of
observed-scores.

Usage

mdlfit.gfx(
x,
x.tickat = NULL,
y.tickat = NULL,
y.lim = NULL,
main.lab = "Observed vs. Expected Frequencies",
x.lab = "Bins",
y.lab = "Frequency",
x.grid = NULL,
y.grid = NULL

)

Arguments

x The output object from the LL.CA(), LL.MC.CA(), HB.CA(), or HB.CA.MC()
functions.

x.tickat The points along the x-axis that bins are to be labeled. Default is NULL (places a
tick for each of the bins).

y.tickat The points along the y-axis where frequencies are to be labelled. Default is
NULL.

y.lim The limits of the y-axis (frequencies). Useful for keeping the scale equal across
several plots.

main.lab The main label (title) of the plot.

x.lab The label for the x-axis (the bins).
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y.lab The label for the y-axis (the frequencies).

x.grid Control the vertical grid-lines of the plot. Takes NULL, NA, or a vector of values
as input. If NULL, grid-lines are drawn automatically for each bin. If NA, no grid-
lines are drawn. If a vector of values are supplied, lines are drawn at each value
provided along the x-axis.

y.grid Control the horizontal grid-lines of the plot. Takes NULL, NA, or a vector of
values as input. If NULL, grid-lines are drawn automatically for each frequency
(i.e., increments of 1). If NA, no grid-lines are drawn. If a vector of values are
supplied, lines are drawn at each value provided along the y-axis.

Examples

# Generate some data. 1000 respondents taking 100 item test:
set.seed(060121)
p.success <- rBeta.4P(1000, 0.25, 0.75, 5, 3)
for (i in 1:100) {

if (i == 1) {
rawdata <- matrix(nrow = 1000, ncol = 100)

}
rawdata[, i] <- rbinom(1000, 1, p.success)

}

# Analyse the accuracy and consistency of the test and store the object:
out <- LL.CA(x = rowSums(rawdata), reliability = cba(rawdata), cut = 50,
min = 0, max = 100, modelfit = c(nbins = 20, minbin = 1))

# Feed the object to the mdlfit.gfx() function:
mdlfit.gfx(out)

# Given the number of observations, the y-axis ticks are a bit crowded. We
# can make it look less crowded by changing the number of ticks, labels, and
# the grid-lines:
mdlfit.gfx(out, y.tickat = seq(0, 250, 25), y.lim = c(0, 250),
y.grid = seq(0, 250, 12.5))

mdo Calculate McDonald’s Omega reliability-coefficient from supplied
variables.

Description

Calculates McDonalds’s Omega reliability-coefficient of the sum-score from the Spearman one-
factor model using the procedure outlined in McDonald (1999).

Usage

mdo(x, fit = FALSE)
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Arguments

x A data-frame or matrix of numerical values where rows represent respondents,
and columns represent items.

fit Logical. Default is FALSE. If TRUE, the output changes from a vector containing
the Omega reliability-estimate to a list containing additional detailed informa-
tion concerning the fitted factor model.

Value

If fit = FALSE, A vector of length 1 containing the estimated McDonalds’s Omega reliability-
coefficient for the sum-score of the supplied variables. If fit = TRUE, a list containing the Omega-
coefficient reliability-estimate as the first entry, followed by the goodness-of-fit index (GFI), a two-
row matrix containing the estimated factor-loadings and error-variances, and the observed and fitted
covariance-matrices and the discrepancy matrix.

Note

Missing values are treated by passing na.rm = TRUE to the var function call and use = "pairwise.complete.obs"
to the cov function call.

The function terminates with an error if there are negative covariance-matrix entries.

References

McDonald, R. P. (1999). Test Theory: A Unified Treatment. Routledge.

Examples

# Generate some fictional data.
set.seed(1234)
rawdata <- matrix(rnorm(500), ncol = 5)
common <- rnorm(100)
rawdata <- apply(rawdata, 2, function(x) {x + common})

# To estimate McDonald's Omega from this data:
mdo(rawdata)

# To retrieve additional information such as the GFI fit-index and model-
# parameter estimates:
mdo(rawdata, fit = TRUE)

MLA Most Likely True Alpha Value Given Observed Outcome.

Description

Given a fitted Standard (two-parameter) Beta Distribution, return the alpha shape-parameter value
where the observed mean becomes the mode.
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Usage

MLA(alpha, beta, x = NULL, n = NULL)

Arguments

alpha Observed alpha-parameter value for fitted Standard Beta Probability Density
Distribution.

beta Observed beta-parameter value for fitted Standard Beta Probability Density Dis-
tribution.

x Observed proportion-correct outcome.

n Test-length.

Value

The Alpha shape-parameter value for the Standard Beta probability density distribution where the
observed mean is the expected mode.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-alpha parameter most likely to have produced the observations:
MLA(a = 10, b = 8)

MLB Most Likely True Beta Value Given Observed Outcome.

Description

Assuming a prior standard (two-parameter) Beta Distribution, return the beta shape-parameter value
where the observed mean becomes the mode.

Usage

MLB(alpha, beta, x = NULL, n = NULL)

Arguments

alpha Observed alpha-parameter value for fitted Standard Beta Probability Density
Distribution.

beta Observed beta-parameter value for fitted Standard Beta Probability Density Dis-
tribution.

x Observed proportion-correct outcome.

n Test-length.
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Value

The Beta shape-parameter value for the Standard Beta probability density distribution where the
observed mean is the expected mode.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-beta parameter most likely to have produced the observations:
MLB(a = 10, b = 8)

MLM Most Likely Mean of the Standard Beta Probability Density Distribu-
tion, Given that the Observation is Considered the Most Likely Obser-
vation of the Standard Beta Probability Density Distribution (i.e., the
mode).

Description

Assuming a prior Standard (two-parameter) Beta Distribution, returns the expected mean of the
distribution under the assumption that the observed value is the most likely value of the distribution.

Usage

MLM(alpha, beta, x = NULL, n = NULL)

Arguments

alpha Observed alpha value for fitted Standard Beta Probability Density Distribution.

beta Observed beta value for fitted Standard Beta Probability Density Distribution.

x Observed proportion-correct outcome.

n Test-length.

Value

The expected mean of the Standard Beta probability density distribution, for which the observed
mean is the most likely value.

Examples

# Assuming a prior Standard (two-parameter) Beta distribution is fit, which
# yield an alpha parameter of 10 and a beta parameter of 8, calculate the
# true-mean most likely to have produced the observations:
MLM(a = 10, b = 8)
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observedmoments Compute Moments of Observed Value Distribution.

Description

Computes Raw, Central, or Standardized moment properties of a vector of observed scores.

Usage

observedmoments(
x,
type = c("raw", "central", "standardized"),
orders = 4,
correct = TRUE

)

Arguments

x A vector of values, the distribution of which moments are to be calculated.

type A character vector determining which moment-types are to be calculated. Per-
missible values are "raw", "central", and "standardized".

orders The number of moment-orders to be calculated for each of the moment-types.

correct Logical. Whether to include bias correction in estimation of orders. Default is
TRUE.

Value

A list of moment types, each a list of moment orders.

Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, 0.25, 0.75, 5, 3))
hist(testdata, xlim = c(0, 100))

# To compute the first four raw, central, and standardized moments for this
# distribution of observed scores using observedmoments():
observedmoments(x = testdata, type = c("raw", "central", "standardized"),
orders = 4, correct = TRUE)
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pBeta.4P Cumulative Probability Function under the Four-Parameter Beta
Probability Density Distribution.

Description

Function for calculating the proportion of observations up to a specifiable quantile under the Four-
Parameter Beta Distribution.

Usage

pBeta.4P(q, l, u, alpha, beta, lower.tail = TRUE)

Arguments

q The quantile or a vector of quantiles for which the proportion is to be calculated.

l The first (lower) location parameter.

u The second (upper) location parameter.

alpha The first shape parameter.

beta The second shape parameter.

lower.tail Whether the proportion to be calculated is to be under the lower or upper tail.
Default is TRUE (lower tail).

Value

A vector of proportions of observations falling under specified quantiles under the four-parameter
Beta distribution.

Examples

# Assume some variable follows a four-parameter Beta distribution with
# location parameters l = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the cumulative probability at a specific point of
# the distribution (e.g., 0.5)
# using pBeta.4P():
pBeta.4P(q = 0.5, l = 0.25, u = 0.75, alpha = 5, beta = 3)
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pBetaBinom Cumulative Probability Function under the Beta-Binomial Probability
Distribution.

Description

Function for calculating the proportion of observations up to a specifiable quantile under the Beta-
Binomial Probability Distribution.

Usage

pBetaBinom(q, N, l, u, alpha, beta, lower.tail = TRUE)

Arguments

q The quantile or a vector of quantiles for which the proportion is to be calculated.

N The total number of trials.

l The first (lower) location parameter.

u The second (upper) location parameter.

alpha The first shape parameter.

beta The second shape parameter.

lower.tail Whether the proportion to be calculated is to be under the lower or upper tail.
Default is TRUE (lower tail).

Value

A vector of proportions of observations falling under specified quantiles under the four-parameter
Beta distribution.

Examples

# Assume some variable follows a Beta-Binomial distribution with number of
# trials = 50, and probabilities of successful trials are drawn from a four-
# parameter Beta distribution with location parameters l = 0.25 and u =
# 0.75, and shape parameters alpha = 5 and beta = 3. To compute the
# cumulative probability at a specific point of the distribution (e.g., 25):
pBetaBinom(q = 25, N = 50, l = .25, u = .75, alpha = 5, beta = 3)



62 pBetaMS

pBetaMS Probability of Some Specific Observation under the Beta Probability
Density Distribution with Specific Location Parameters, Mean, and
Variance.

Description

Calculates the probability of some specific observation falling under a specified interval ([0, x] or
[x, 1]) under the Standard Beta probability density distribution with defined mean and variance or
standard deviation.

Usage

pBetaMS(q, mean, variance = NULL, sd = NULL, lower.tail = TRUE, l = 0, u = 1)

Arguments

q A specific point on the x-axis of the Standard Beta probability density distribu-
tion with a defined mean and variance.

mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard Beta probability density distribu-

tion.
lower.tail Whether the density that should be considered is between the lower-end (i.e., [0

-> x]) or the higher-end of the distribution (i.e., [x -> 1]).
l The lower-bound location parameter. Default set to 0 (the standard Beta distri-

bution).
u The upper-bound location parameter. Default set to 1 (the standard Beta distri-

bution).

Value

A value representing the probability of a random draw from the Standard Beta probability density
distribution with a defined mean and variance being from one of two defined intervals (i.e., [0 -> x]
or [x -> 1]).

Examples

# To compute the proportion of the density under the lower-end tail of a
# point along the Standard (two-parameter) Probability Density Distribution
# (e.g., 0.5) with mean of 0.6 and variance of 0.04:
pBetaMS(q = 0.5, mean = 0.6, variance = 0.04)

# To compute the proportion of the density under the lower-end tail of a
# point along the Four-Parameter Beta Probability Density Distribution
# (e.g., 50) with mean of 60 and variance of 400, and lower-bound of 0 and
# upper-bound of 100:
pBetaMS(q = 50, mean = 60, variance = 400, l = 0, u = 100)
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pcBinom Cumulative Probability Mass function for Lord’s Two-Term Approxi-
mation to the Compound Binomial Distribution.

Description

Function for calculating the proportion of observations up to a specifiable quantile under Lord’s
two-term approximation to the compound Binomial distribution.

Usage

pcBinom(q, N, k, p, lower.tail = TRUE)

Arguments

q The quantile or vector of quantiles for which the proportion is to be calculated.

N Total number of trials.

k Lord’s k (see documentation for the Lords.k() function).

p Probability of success for each trial.

lower.tail Logical. If TRUE (default), probabilities are P[X<x], otherwise, P[X >= x].
Note that this differs from base-R binom() functions.

Examples

# Assume some variable follows a compound Binomial distribution with 100
# trials, a 50% probability of success on each trial, and Lord's k = 1. To
# compute the cumulative probability at a specific point of the distribution
# (e.g., 50):
pcBinom(q = 50, N = 100, k = 1, p = .5)

pGammaBinom Cumulative probability density function under the Gamma-extended
Binomial distribution.

Description

Extends the cumulative Binomial probability mass function to positive non-integers, effectively
turning the mass-function into a density-function.

Usage

pGammaBinom(q, size, prob, lower.tail = TRUE)
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Arguments

q Vector of quantiles.

size Number of "trials" (zero or more). Need not be integer.

prob Probability of "success" on each "trial". Need not be integer.

lower.tail Logical. If TRUE (default), probabilities are P[X<x], otherwise, P[X >= x].
Note that this differs from base-R binom() functions.

References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).

Examples

# Assume some variable follows a Gamma-Binomial distribution with
# "number of trials" = 10.5 and probability of "success" for each "trial"
# = 0.75, to compute the cumulative probability to attain a "number of
# success" below a specific point (e.g., less than 7.5 "successes":
pGammaBinom(q = 7.5, size = 10.5, prob = 0.75)

# Conversely, to attain a value at or above 7.5:
pGammaBinom(q = 7.5, size = 10.5, prob = 0.75, lower.tail = FALSE)

qBeta.4P Quantile Given Probability Under the Four-Parameter Beta Distribu-
tion.

Description

Function for calculating the quantile (i.e., value of x) for a given proportion (i.e., the value of y)
under the Four-Parameter Beta Distribution.

Usage

qBeta.4P(p, l, u, alpha, beta, lower.tail = TRUE)

Arguments

p A vector (or single value) of proportions or probabilities for which the corre-
sponding value of x (i.e., the quantiles) are to be calculated.

l The first (lower) location parameter.

u The second (upper) location parameter.

alpha The first shape parameter.

beta The second shape parameter.

lower.tail Logical. Whether the quantile(s) to be calculated is to be under the lower or
upper tail. Default is TRUE (lower tail).
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Value

A vector of quantiles for specified probabilities or proportions of observations under the four-
parameter Beta distribution.

Examples

# Assume some variable follows a four-parameter Beta distribution with
# location parameters l = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To compute the quantile at a specific point of the
# distribution (e.g., 0.5) using qBeta.4P():
qBeta.4P(p = 0.5, l = 0.25, u = 0.75, alpha = 5, beta = 3)

qBetaMS Quantile Containing Specific Proportion of the Distribution, Given a
Specific Probability of the Beta Probability Density Distribution with
Specific Mean and Variance.

Description

Calculates the quantile corresponding to a specific probability of some observation falling within
the [0, x] (lt = TRUE) or [x, 1] (lt = FALSE) interval under the Standard Beta probability density
distribution with defined mean and variance or standard deviation.

Usage

qBetaMS(p, mean, variance = NULL, sd = NULL, lower.tail = TRUE, l = 0, u = 1)

Arguments

p A value of probability marking the point of the Y-axis to correspond to the X-
axis.

mean The mean of the target Standard Beta probability density distribution.

variance The variance of the target Standard Beta probability density distribution.

sd The standard deviation of the target Standard Beta probability density distribu-
tion.

lower.tail Logical. Specifies which end of the tail for which to calculate quantile. Default
is TRUE (meaning, find q for lower tail.)

l The lower-bound location parameter. Default set to 0 (the standard Beta distri-
bution).

u The upper-bound location parameter. Default set to 1 (the standard Beta distri-
bution).

Value

A numeric value representing the quantile for which the specified proportion of observations fall
within.
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Examples

# To compute the quantile at a specific point (e.g., 0.5) along the Standard
# (two-parameter) Probability Density Distribution with mean of 0.6 and variance of 0.04:
qBetaMS(p = 0.5, mean = 0.6, variance = 0.04)

# To compute the quantile at a specific points(e.g., 0.5) along the four-
# parameter Beta distribution with a mean of 60, variance of 400, and lower-
# bound of 0 and upper-bound of 100:
qBetaMS(p = 0.5, mean = 60, variance = 400, l = 0, u = 100)

qGammaBinom Quantile function for the Gamma-extended Binomial distribution.

Description

Quantile function for the Gamma-extended Binomial distribution.

Usage

qGammaBinom(p, size, prob, lower.tail = TRUE, precision = 1e-07)

Arguments

p Vector of probabilities.

size Number of "trials" (zero or more, including positive non-integers).

prob Probability of success on each "trial".

lower.tail Logical. If TRUE (default), probabilities are P[X < x], otherwise P[X > x].

precision The precision with which the quantile is to be calculated. Default is 1e-7 (i.e.,
search terminates when there is no registered change in estimate at the seventh
decimal). Tuning this value will impact the time it takes for the search algorithm
to arrive at an estimate.

Note

This function uses a bisection search-algorithm to find the number of successes corresponding to the
specified quantile(s). This algorithm is inefficient with respect to the number of iterations required
to converge on the solution. More efficient algorithms might be added in later versions.

References

Loeb, D. E. (1992). A generalization of the binomial coefficients. Discrete Mathematics, 105(1-3).
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Examples

# For a Gamma-extended Binomial distribution with number of trials = 10 and
# probability of success per trial of 0.75, calculate the number of success-
# ful trials at or below the 25% quantile:
qGammaBinom(p = 0.25, size = 10, prob = 0.75)

# Conversely, for a Gamma-extended Binomial distribution with number of
# trials = 10 and probability of success per trial of 0.75, calculate the
# number of successful trials at or above the 25% quantile:
qGammaBinom(p = 0.25, size = 10, prob = 0.75, lower.tail = FALSE)

R.ETL Model Implied Reliability from Livingston and Lewis’ "Effective Test
Length".

Description

Calculate model-implied reliability given mean, variance, the minimum and maximum possible
scores, and the effective test length.

Usage

R.ETL(mean, variance, min = 0, max = 1, ETL)

Arguments

mean The mean of the observed-score distribution.

variance The variance of the observed-score distribution.

min The lower-bound (minimum possible value) of the observed-score distribution.
Default is 0 (assuming observed scores represent proportions).

max The upper-bound (maximum possible value) of the observed-score distribution.
Default is 1 (assuming observed scores represent proportions).

ETL The effective test length as defined by Livingston and Lewis (1995).

Value

An estimate of the reliability of a test, given the effective test length, mean, variance, and minimum
and maximum possible scores of the observed-score distribution..

References

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).
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Examples

# Generate some fictional data. Say, 100 individuals take a test with a
# maximum score of 100 and a minimum score of 0.
set.seed(1234)
testdata <- rbinom(100, 100, rBeta.4P(100, .25, .75, 5, 3))
hist(testdata, xlim = c(0, 100))

# From the data-generating script above, the effective test length is 100.
# To estimate and retrieve the model-implied reliability using R.ETL():
R.ETL(mean = mean(testdata), variance = var(testdata), min = 0, max = 100,
ETL = 100)

rBeta.4P Random Number Generation under the Four-Parameter Beta Proba-
bility Density Distribution.

Description

Function for generating random numbers from a specified Four-Parameter Beta Distribution.

Usage

rBeta.4P(n, l, u, alpha, beta)

Arguments

n Number of draws.

l The first (lower) location parameter.

u The second (upper) location parameter.

alpha The alpha (first) shape parameter.

beta The beta (second) shape parameter.

Value

A vector with length n of random values drawn from the Four-Parameter Beta Distribution.

Examples

# Assume some variable follows a four-parameter Beta distribution with
# location parameters l = 0.25 and u = 0.75, and shape parameters alpha = 5
# and beta = 3. To draw a random value from this distribution using
# rBeta.4P():
rBeta.4P(n = 1, l = 0.25, u = 0.75, alpha = 5, beta = 3)
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rBetaBinom Random Number Generation under the Beta-Binomial Probability
Mass Distribution.

Description

Random Number Generation under the Beta-Binomial Probability Mass Distribution.

Usage

rBetaBinom(n, N, l, u, alpha, beta)

Arguments

n Number of draws.

N Number of trials.

l The first (lower) location parameter.

u The second (upper) location parameter.

alpha The alpha (first) shape parameter.

beta The beta (second) shape parameter.

Value

A vector with length n of random values drawn from the Beta-Binomial Distribution.

Examples

# To draw a sample of 50 values from a Beta-Binomial distribution with
# number of trials = 100, and with success-probabilities drawn from a
# Four-Parameter Beta distribution with location parameters l = 0.25 and
# u = 0.95, and shape-parameters alpha = 5 and beta = 3:
rBetaBinom(n = 50, N = 100, l = 0.25, u = 0.95, alpha = 5, beta = 3)

rBetacBinom Random Number Generation under Lord’s Beta Compound-Binomial
Distribution.

Description

Random number generation under Lord’s Beta Compound-Binomial distribution, where the Compound-
Binomial distribution is Lord’s two-term approximation.

Usage

rBetacBinom(x, N, k, l, u, alpha, beta)
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Arguments

x Number of draws.
N Number of trials.
k Lord’s k (see documentation for the Lords.k() function).
l The lower-bound location parameter of the four-parameter Beta distribution.
u The upper-bound location parameter of the four-parameter Beta distribution.
alpha The first shape-parameter of the four-parameter Beta distribution.
beta The second shape-parameter of the four-parameter Beta distribution.

Note

For larger values of k, the distribution can yield negative probabilities which returns an error.

Examples

# To draw a sample of 50 values from a Beta Compound-Binomial distribution
# with number of trials = 100, Lord's k = 1, and probabilities of successful
# trials drawn from a four-parameter Beta distribution with location-
# parameters l = .15 and u = .85, and shape parameters alpha = 6 and
# beta = 4:
rBetacBinom(x = 50, N = 100, k = 1, l = .15, u = .85, alpha = 6, beta = 4)

rBetaMS Random Draw from the Beta Probability Density Distribution With
Specific Mean and Variance.

Description

Draws random samples of observations from the Standard Beta probability density distribution with
defined mean and variance.

Usage

rBetaMS(n, mean, variance = NULL, sd = NULL, l = 0, u = 1)

Arguments

n Number of observations to be drawn from under the Standard Beta Probability
Density Distribution.

mean The mean of the target Standard Beta probability density distribution.
variance The variance of the target Standard Beta probability density distribution.
sd The standard deviation of the target Standard probability density distribution.
l The lower-bound location parameter. Default set to 0 (the standard Beta distri-

bution).
u The upper-bound location parameter. Default set to 1 (the standard Beta distri-

bution).
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Value

A vector of length n, each value representing a random draw from the Standard Beta probability
density distribution with defined mean and variance.

Examples

# To draw a random sample of 100 values from a Standard Beta distribution
# with a mean of 0.6 and variance = 0.04:
rBetaMS(n = 100, mean = 0.6, variance = 0.04)

# To draw a random sample of 100 values from a Four-Parameter Beta
# 0 and an upper-bound of 100:
rBetaMS(n = 100, mean = 60, variance = 400, l = 0, u = 100)

rcBinom Random Number Generation under Lord’s Two-Term Approximation
to the Compound Binomial Distribution.

Description

Random Number Generation under Lord’s Two-Term Approximation to the Compound Binomial
Distribution.

Usage

rcBinom(n, N, k, p)

Arguments

n Number of draws.

N Number of trials.

k Lord’s k (see documentation for the Lords.k() function).

p Probability of success for each trial.

Note

For larger values of k, the distribution can yield negative probabilities. This function handles such
occurrences by adding the absolute value of the minimum probability to all observations if there are
any negative probabilities and then normalize the distribution so that the total density is equal to 1.
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Examples

# To draw a sample of 50 values from a Compound-Binomial distribution with
# number of trials = 100, a 50% probability of success for each trial, and
# Lord's k = 1:
set.seed(1234)
rcBinom(n = 50, N = 100, k = 1, p = .5)

# To draw values where the probabilities vary for each draw:
rcBinom(n = 50, N = 100, k = 1, p = runif(50))

rGammaBinom Random number generation under the Gamma-extended Binomial dis-
tribution.

Description

Random number generation under the Gamma-extended Binomial distribution.

Usage

rGammaBinom(n, size, prob, precision = 1e-04)

Arguments

n Number of observations.

size Number of "trials" (zero or more). Need not be integer.

prob Probability of "success" on each "trial". Need not be integer.

precision The precision with which the quantile is to be calculated. Default is 1e-4 (i.e.,
search terminates when there is no registered change in estimate at the fourth
decimal). Tuning this value will impact the time it takes for the search algorithm
to arrive at an estimate.

Note

Calls qGammaBinom(), which makes the random draw slower than what one might be used to (since
qGammaBinom() calls pGammaBinom() and employs a search-algorithm to find the appropriate value
down to a specifiable level of precision).

Examples

# Assume some variable follows a Gamma-Binomial distribution with
# "number of trials" = 10.5 and probability of "success" for each "trial"
# = 0.75 To draw a random value from this distribution:
rGammaBinom(n = 1, size = 10, prob = 0.75)
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tsm Proportional true-score distribution raw moments from Livingston and
Lewis’ effective test-score and effective test-length.

Description

An implementation of Lords (1965, p. 265) equation 37 for estimating the raw moments of the
true-score distribution, modified to function for the Livingston and Lewis approach.

Usage

tsm(x, r, n, method = "product")

Arguments

x The effective test-score of test-takers.

r The moment-order that is to be calculated (where 1 is the mean, 2 is the raw
variance, 3 is the raw skewness, etc.).

n The effective test-length.

method The method by which the descending factorials are to be calculated. Default is
"product" which uses direct arithmetic. Alternative is "gamma" which calcu-
lates the descending factorial using the Gamma function. The alternative method
might be faster but might fail because the Gamma function is not defined for
negative integers (returning Inf).

References

Lord, F. M. (1965). A strong true-score theory, with applications. Psychometrika. 30(3). pp.
239–270. doi: 10.1007/BF02289490

Livingston, Samuel A. and Lewis, Charles. (1995). Estimating the Consistency and Accuracy of
Classifications Based on Test Scores. Journal of Educational Measurement, 32(2).

Examples

# Examine the raw moments of the underlying Beta distribution that is to provide the basis for
# observed-scores:
betamoments(alpha = 5, beta = 3, l = 0.25, u = 0.75, types = "raw")

# Generate observed-scores from true-scores by passing the true-scores as binomial probabilities
# for the rbinom function.
set.seed(1234)
obs.scores <- rbinom(1000, 100, rBeta.4P(1000, 0.25, 0.75, 5, 3))
# Examine the raw moments of the observed-score distribution.
observedmoments(obs.scores, type = "raw")

# First four estimated raw moment of the proportional true-score distribution from the observed-
# score distribution. As all items are equally difficult, the effective test-length is equal to
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# the actual test-length.
tsm(x = obs.scores, r = 1, n = 100)
tsm(x = obs.scores, r = 2, n = 100)
tsm(x = obs.scores, r = 3, n = 100)
tsm(x = obs.scores, r = 4, n = 100)
# Which is fairly close to the true raw moments of the proportional true-score distribution
# calculated above.

UABMSL Upper Location Parameter Given Shape Parameters, Mean, Variance,
and Lower Location Parameter of a Four-Parameter Beta Probability
Density Distribution.

Description

Calculates the upper-bound value required to produce a Beta probability density distribution with
defined moments and parameters. Be advised that not all combinations of moments and parameters
can be satisfied (e.g., specifying mean, variance, skewness and kurtosis uniquely determines both
location-parameters, meaning that the value of the upper-location parameter will take on which ever
value it must, and cannot be specified).

Usage

UABMSL(
alpha = NULL,
beta = NULL,
mean = NULL,
variance = NULL,
l = NULL,
sd = NULL

)

Arguments

alpha The alpha shape-parameter of the target Beta probability density distribution.

beta The beta shape-parameter of the target Beta probability density distribution.

mean The mean (first raw moment) of the target Standard Beta probability density
distribution.

variance The variance (second central moment) of the target Standard Beta probability
density distribution.

l The lower-bound of the Beta distribution. Default is NULL (i.e., does not take
a specified l-parameter into account).

sd Optional alternative to specifying var. The standard deviation of the target Stan-
dard Beta probability density distribution.
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Value

A numeric value representing the required value for the Beta upper location-parameter (u) in order
to produce a Beta probability density distribution with the target moments and parameters.

Examples

# Generate some fictional data.
set.seed(1234)
testdata <- rBeta.4P(100000, 0.25, 0.75, 5, 3)
hist(testdata, xlim = c(0, 1), freq = FALSE)

# Suppose you know three of the four necessary parameters to fit a four-
# parameter Beta distribution (i. e., l = 0.25, alpha = 5, beta = 3) to this
# data. To find the value for the necessary u parameter, estimate the mean
# and variance of the distribution:
M <- mean(testdata)
S2 <- var(testdata)

# To find the l parameter necessary to produce a four-parameter Beta
# distribution with the target mean, variance, and u, alpha, and beta
# parameters using the LMSBAU() function:
(u <- UABMSL(alpha = 5, beta = 3, mean = M, variance = S2, l = 0.25))
curve(dBeta.4P(x, 0.25, u, 5, 3), add = TRUE, lwd = 2)
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